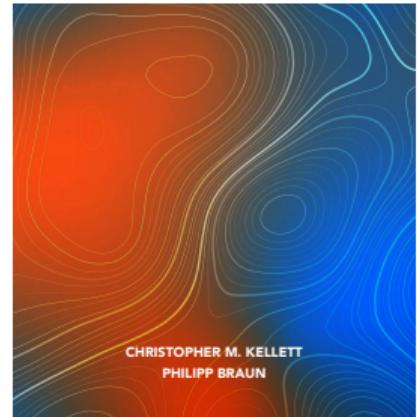


# Introduction to Nonlinear Control

Stability, control design, and estimation

Christopher M. Kellett & Philipp Braun

Introduction to  
Nonlinear Control  
STABILITY, CONTROL DESIGN, AND ESTIMATION



## Part II: Controller Design

### 12 Introduction to Differential Geometric Methods

#### 12.1 Introductory Examples

#### 12.2 Zero Dynamics and Relative Degree

#### 12.3 Feedback Linearization

##### 12.3.1 Nonlinear Controllability

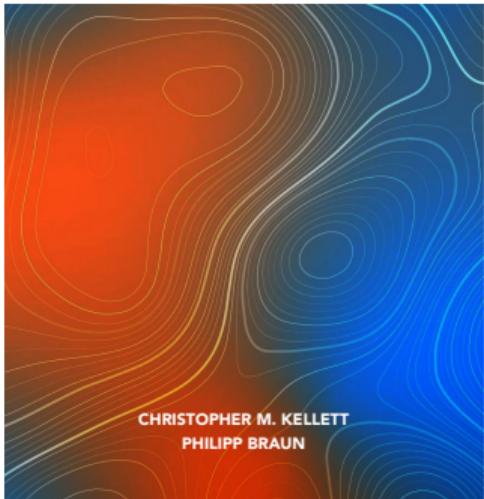
##### 12.3.2 Input-to-State Linearization

#### 12.4 Exercises

#### 12.5 Bibliographical Notes and Further Reading

# Introduction to Nonlinear Control

STABILITY, CONTROL DESIGN, AND ESTIMATION



## Introductory Examples: (Example 1)

Consider (nonlinear system)

$$\dot{x} = x^3 + u, \quad y = x.$$

Goal: Stabilize the state/output  $y = x = 0$ .

## Introductory Examples: (Example 1)

Consider (nonlinear system)

$$\dot{x} = x^3 + u, \quad y = x.$$

Goal: Stabilize the state/output  $y = x = 0$ .

Solution: Linear Controller Design

- Linearization about the origin:

$$\dot{x} = u$$

- Natural stabilizing controller selection

$$u = -kx \quad (k > 0)$$

- Nonlinear closed loop dynamics:

$$\dot{x} = x(x^2 - k), \quad x^e \in \{0, \pm\sqrt{k}\}.$$

## Introductory Examples: (Example 1)

Consider (nonlinear system)

$$\dot{x} = x^3 + u, \quad y = x.$$

Goal: Stabilize the state/output  $y = x = 0$ .

Solution: Linear Controller Design

- Linearization about the origin:

$$\dot{x} = u$$

- Natural stabilizing controller selection

$$u = -kx \quad (k > 0)$$

- Nonlinear closed loop dynamics:

$$\dot{x} = x(x^2 - k), \quad x^e \in \{0, \pm\sqrt{k}\}.$$

Note that:

- Origin is locally asymptotically stable.
- Region of attraction increases with  $k$ .

## Introductory Examples: (Example 1)

Consider (nonlinear system)

$$\dot{x} = x^3 + u, \quad y = x.$$

Goal: Stabilize the state/output  $y = x = 0$ .

Solution: Linear Controller Design

- Linearization about the origin:

$$\dot{x} = u$$

- Natural stabilizing controller selection

$$u = -kx \quad (k > 0)$$

- Nonlinear closed loop dynamics:

$$\dot{x} = x(x^2 - k), \quad x^e \in \{0, \pm\sqrt{k}\}.$$

Note that:

- Origin is locally asymptotically stable.
- Region of attraction increases with  $k$ .

Nonlinear Controller Design:

- Consider the nonlinear feedback

$$u = -x^3 + v, \quad v \text{ to be designed}$$

- Closed-loop system  $\dot{x} = v$

- Natural feedback selection

$$v = -kx \quad (k > 0)$$

- Closed-loop system:

$$\dot{x} = -kx \quad (\text{with globally as. stable origin})$$

- Overall feedback law:

$$u = -x^3 - kx$$

## Introductory Examples: (Example 1)

Consider (nonlinear system)

$$\dot{x} = x^3 + u, \quad y = x.$$

Goal: Stabilize the state/output  $y = x = 0$ .

Solution: Linear Controller Design

- Linearization about the origin:

$$\dot{x} = u$$

- Natural stabilizing controller selection

$$u = -kx \quad (k > 0)$$

- Nonlinear closed loop dynamics:

$$\dot{x} = x(x^2 - k), \quad x^e \in \{0, \pm\sqrt{k}\}.$$

Note that:

- Origin is locally asymptotically stable.
- Region of attraction increases with  $k$ .

Nonlinear Controller Design:

- Consider the nonlinear feedback

$$u = -x^3 + v, \quad v \text{ to be designed}$$

- Closed-loop system  $\dot{x} = v$

- Natural feedback selection

$$v = -kx \quad (k > 0)$$

- Closed-loop system:

$$\dot{x} = -kx \quad (\text{with globally as. stable origin})$$

- Overall feedback law:

$$u = -x^3 - kx$$

Note that:

- Coordinate transformation leads to a linear system
- Global instead of local asymptotic stability

## Introductory Examples: (Example 2)

Consider second-order system

$$\dot{x}_1 = x_2 + x_1^2$$

$$\dot{x}_2 = -2x_1^3 - 2x_1x_2 + u$$

$$y = x_1$$

## Introductory Examples: (Example 2)

Consider second-order system

$$\dot{x}_1 = x_2 + x_1^2$$

$$\dot{x}_2 = -2x_1^3 - 2x_1x_2 + u$$

$$y = x_1$$

Consider change of coordinates

$$z_1 = x_1$$

$$z_2 = x_2 + x_1^2$$

## Introductory Examples: (Example 2)

Consider second-order system

$$\dot{x}_1 = x_2 + x_1^2$$

$$\dot{x}_2 = -2x_1^3 - 2x_1x_2 + u$$

$$y = x_1$$

Consider change of coordinates

$$z_1 = x_1$$

$$z_2 = x_2 + x_1^2$$

System in new coordinates:

$$\dot{z}_1 = z_2$$

$$\dot{z}_2 = \dot{x}_2 + 2x_1\dot{x}_1 = u$$

$$y = z_1,$$

**Note that:** The system is linear in  $z$ !

## Introductory Examples: (Example 2)

Consider second-order system

$$\dot{x}_1 = x_2 + x_1^2$$

$$\dot{x}_2 = -2x_1^3 - 2x_1x_2 + u$$

$$y = x_1$$

Linear/Nonlinear feedback law ( $k_1, k_2 > 0$ ):

$$u = -k_1 z_1 - k_2 z_2$$

$$= -k_1 x_1 - k_2 (x_2 + x_1^2)$$

Consider change of coordinates

$$z_1 = x_1$$

$$z_2 = x_2 + x_1^2$$

System in new coordinates:

$$\dot{z}_1 = z_2$$

$$\dot{z}_2 = \dot{x}_2 + 2x_1\dot{x}_1 = u$$

$$y = z_1,$$

Global asymptotic stability of the origin can be easily verified by checking the eigenvalues of the linear closed-loop system.

Note that: The system is linear in  $z$ !

## Introductory Examples: (Example 2)

Consider second-order system

$$\dot{x}_1 = x_2 + x_1^2$$

$$\dot{x}_2 = -2x_1^3 - 2x_1x_2 + u$$

$$y = x_1$$

Consider change of coordinates

$$z_1 = x_1$$

$$z_2 = x_2 + x_1^2$$

System in new coordinates:

$$\dot{z}_1 = z_2$$

$$\dot{z}_2 = \dot{x}_2 + 2x_1\dot{x}_1 = u$$

$$y = z_1,$$

Note that: The system is linear in  $z$ !

Linear/Nonlinear feedback law ( $k_1, k_2 > 0$ ):

$$u = -k_1z_1 - k_2z_2$$

$$= -k_1x_1 - k_2(x_2 + x_1^2)$$

Global asymptotic stability of the origin can be easily verified by checking the eigenvalues of the linear closed-loop system.

Note that:

- Coordinate transformation allows us to stabilize and analyze a linear system instead of a nonlinear system.
- $x \rightarrow 0$  is equivalent to  $z \rightarrow 0$ .
- For the input-output behavior it is not important if the dynamics are written in terms of  $x$  or  $z$ .

## Introductory Examples: (Example 3)

Consider the nonlinear system:

$$\begin{aligned}\dot{x}_1 &= x_2 \\ \dot{x}_2 &= x_3^3 + u \quad y = x_1, \\ \dot{x}_3 &= x_1 + x_3^3\end{aligned}$$

Consider change of coordinates:

$$\begin{aligned}z_1 &= x_3 \\ z_2 &= x_1 + x_3^3 \\ z_3 &= x_2 + 3x_1x_3^2 + 3x_3^5.\end{aligned}$$

and initial feedback (with  $v$  to be designed):

$$u = -x_3^3 - 3x_2x_3^2 - 6x_1^2x_3 - 21x_1x_3^4 - 15x_3^7 + v,$$

## Introductory Examples: (Example 3)

Consider the nonlinear system:

$$\begin{aligned}\dot{x}_1 &= x_2 \\ \dot{x}_2 &= x_3^3 + u \quad y = x_1, \\ \dot{x}_3 &= x_1 + x_3^3\end{aligned}$$

Consider change of coordinates:

$$\begin{aligned}z_1 &= x_3 \\ z_2 &= x_1 + x_3^3 \\ z_3 &= x_2 + 3x_1x_3^2 + 3x_3^5.\end{aligned}$$

and initial feedback (with  $v$  to be designed):

$$u = -x_3^3 - 3x_2x_3^2 - 6x_1x_3^2 - 21x_1x_3^4 - 15x_3^7 + v,$$

Leads to linear states (but a nonlinear output):

$$\begin{aligned}\dot{z}_1 &= z_2 \\ \dot{z}_2 &= z_3 \quad y = z_2 - z_1^3 \\ \dot{z}_3 &= v\end{aligned}\tag{1}$$

## Introductory Examples: (Example 3)

Consider the nonlinear system:

$$\begin{aligned}\dot{x}_1 &= x_2 \\ \dot{x}_2 &= x_3^3 + u \\ \dot{x}_3 &= x_1 + x_3^3\end{aligned} \qquad y = x_1,$$

The feedback law

$$u = -x_3^3 + v$$

Leads to linear input-output relationship from  $v$  to  $y$ :

Consider change of coordinates:

$$\begin{aligned}z_1 &= x_3 \\ z_2 &= x_1 + x_3^3 \\ z_3 &= x_2 + 3x_1x_3^2 + 3x_3^5.\end{aligned}$$

$$\begin{aligned}\dot{x}_1 &= x_2 \\ \dot{x}_2 &= v \\ \dot{x}_3 &= x_1 + x_3^3\end{aligned} \qquad y = x_1 \quad (2)$$

and initial feedback (with  $v$  to be designed):

$$u = -x_3^3 - 3x_2x_3^2 - 6x_1x_3^2 - 21x_1x_3^4 - 15x_3^7 + v,$$

Leads to linear states (but a nonlinear output):

$$\begin{aligned}\dot{z}_1 &= z_2 \\ \dot{z}_2 &= z_3 \\ \dot{z}_3 &= v\end{aligned} \qquad y = z_2 - z_1^3 \quad (1)$$

## Introductory Examples: (Example 3)

Consider the nonlinear system:

$$\begin{aligned}\dot{x}_1 &= x_2 \\ \dot{x}_2 &= x_3^3 + u \\ \dot{x}_3 &= x_1 + x_3^3\end{aligned} \qquad y = x_1,$$

The feedback law

$$u = -x_3^3 + v$$

Leads to linear input-output relationship from  $v$  to  $y$ :

Consider change of coordinates:

$$\begin{aligned}z_1 &= x_3 \\ z_2 &= x_1 + x_3^3 \\ z_3 &= x_2 + 3x_1x_3^2 + 3x_3^5.\end{aligned}$$

and initial feedback (with  $v$  to be designed):

$$u = -x_3^3 - 3x_2x_3^2 - 6x_1x_3^2 - 21x_1x_3^4 - 15x_3^7 + v,$$

Leads to linear states (but a nonlinear output):

$$\begin{aligned}\dot{z}_1 &= z_2 \\ \dot{z}_2 &= z_3 \\ \dot{z}_3 &= v\end{aligned} \qquad y = z_2 - z_1^3 \quad (1)$$

$$\begin{aligned}\dot{x}_1 &= x_2 \\ \dot{x}_2 &= v \\ \dot{x}_3 &= x_1 + x_3^3\end{aligned} \qquad y = x_1 \quad (2)$$

Here,

- we are able to partially linearize the dynamics
- the “internal” (nonlinear)  $x_3$  dynamics, are not visible through the output
- for (1),  $v$  can be defined such that the origin  $z = 0$  is asymptotically stable (i.e.,  $y$  converges to zero).
- for (2) a controller guaranteeing  $y(t) \rightarrow 0$  for  $t \rightarrow \infty$  can be defined using pole placement. (But is the origin asymptotically stable?)

In this chapter we will discuss . . .

### Feedback linearization

- Input-to-state linearization
- Input-to-output linearization

Relies on properties such as

- relative degree
- zero dynamics

## In this chapter we will discuss . . .

### Feedback linearization

- Input-to-state linearization
- Input-to-output linearization

### Relies on properties such as

- relative degree
- zero dynamics

### Relies on concepts such as

- coordinate transformation of the state
- coordinate transformation of the input

## Feedback linearization

- Input-to-state linearization
- Input-to-output linearization

## Relies on properties such as

- relative degree
- zero dynamics

## Relies on concepts such as

- coordinate transformation of the state
- coordinate transformation of the input
- (repeated) Lie derivatives  
 $(\lambda : \mathbb{R}^n \rightarrow \mathbb{R}^m, f : \mathbb{R}^n \rightarrow \mathbb{R}^n)$

$$L_f^0 \lambda(x) = \lambda(x)$$

$$L_f \lambda(x) = \frac{\partial \lambda}{\partial x}(x) \cdot f(x)$$

$$L_f^k \lambda(x) = \frac{\partial}{\partial x} \left( L_f^{k-1} \lambda(x) \right) f(x),$$

## In this chapter we will discuss ...

### Feedback linearization

- Input-to-state linearization
- Input-to-output linearization

### Relies on properties such as

- relative degree
- zero dynamics

This also allows us to talk about

- nonlinear controllability (accessibility)

### Relies on concepts such as

- coordinate transformation of the state
- coordinate transformation of the input
- (repeated) Lie derivatives  
 $(\lambda : \mathbb{R}^n \rightarrow \mathbb{R}^m, f : \mathbb{R}^n \rightarrow \mathbb{R}^n)$

$$L_f^0 \lambda(x) = \lambda(x)$$

$$L_f \lambda(x) = \frac{\partial \lambda}{\partial x}(x) \cdot f(x)$$

$$L_f^k \lambda(x) = \frac{\partial}{\partial x} \left( L_f^{k-1} \lambda(x) \right) f(x),$$

# Introduction to Nonlinear Control: Stability, control design, and estimation

## Part I: Dynamical Systems

1. Nonlinear Systems - Fundamentals & Examples
2. Nonlinear Systems - Stability Notions
3. Linear Systems and Linearization
4. Frequency Domain Analysis
5. Discrete Time Systems
6. Absolute Stability
7. Input-to-State Stability

## Part II: Controller Design

8. LMI Based Controller and Antiwindup Designs
9. Control Lyapunov Functions
10. Sliding Mode Control
11. Adaptive Control
12. Introduction to Differential Geometric Methods
13. Output Regulation
14. Optimal Control
15. Model Predictive Control

## Part III: Observer Design & Estimation

16. Observer Design for Linear Systems
17. Extended & Unscented Kalman Filter & Moving Horizon Estimation
18. Observer Design for Nonlinear Systems