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Introductory Examples: (Example 1)

Consider (nonlinear system)

ẋ = x3 + u, y = x.

Goal: Stabilize the state/output y = x = 0.

Solution: Linear Controller Design

Linearization about the origin:

ẋ = u
Natural stabilizing controller selection

u = −kx (k > 0)
Nonlinear closed loop dynamics:

ẋ = x(x2 − k), xe ∈ {0,±
√
k}.

Note that:

Origin is locally asymptotically stable.

Region of attraction increases with k.

Nonlinear Controller Design:

Consider the nonlinear feedback

u = −x3 + v, v to be designed
Closed-loop system ẋ = v

Natural feedback selection

v = −kx (k > 0)
Closed-loop system:

ẋ = −kx (with globally as. stable origin)
Overall feedback law:

u = −x3 − kx

Note that:

Coordinate transformation leads to a linear system

Global instead of local asymptotic stability
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Introductory Examples: (Example 2)

Consider second-order system

ẋ1 = x2 + x2
1

ẋ2 = −2x3
1 − 2x1x2 + u

y = x1

Consider change of coordinates

z1 = x1

z2 = x2 + x2
1

System in new coordinates:

ż1 = z2

ż2 = ẋ2 + 2x1ẋ1 = u

y = z1,

Note that: The system is linear in z!

Linear/Nonlinear feedback law (k1, k2 > 0):

u = −k1z1 − k2z2

= −k1x1 − k2
(
x2 + x2

1

)
Global asymptotic stability of the origin can be easily

verified by checking the eigenvalues of the linear
closed-loop system.

Note that:

Coordinate transformation allows us to stabilize
and analyze a linear system instead of a nonlinear
system.

x → 0 is equivalent to z → 0.

For the input-output behavior it is not important if
the dynamics are written in terms of x or z.
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Introductory Examples: (Example 3)

Consider the nonlinear system:

ẋ1 = x2

ẋ2 = x3
3 + u

ẋ3 = x1 + x3
3

y = x1,

Consider change of coordinates:

z1 = x3

z2 = x1 + x3
3

z3 = x2 + 3x1x
2
3 + 3x5

3.

and initial feedback (with v to be designed):

u = −x3
3 − 3x2x

2
3 − 6x2

1x3 − 21x1x
4
3 − 15x7

3 + v,

Leads to linear states (but a nonlinear output):

ż1 = z2
ż2 = z3
ż3 = v

y = z2 − z31 (1)

The feedback law

u = −x3
3 + v

Leads to linear input-output relationship from v to y:

ẋ1 = x2

ẋ2 = v
ẋ3 = x1 + x3

3

y = x1 (2)

Here,

we are able to partially linearize the dynamics

the “internal” (nonlinear) x3 dynamics, are not
visible through the output

for (1), v can be defined such that the origin z = 0
is asymptotically stable (i.e., y converges to zero).

for (2) a controller guaranteeing y(t) → 0 for
t → ∞ can be defined using pole placement.
(But is the origin asymptotically stable?)
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ż2 = z3
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ż2 = z3
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In this chapter we will discuss . . .

Feedback linearization

Input-to-state linearization

Input-to-output linearization

Relies on properties such as

relative degree

zero dynamics

This also allows us to talk about

nonlinear controllability (accessibility)

Relies on concepts such as

coordinate transformation of the state

coordinate transformation of the input

(repeated) Lie derivatives
(λ : Rn → Rm, f : Rn → Rn)

L0
fλ(x) = λ(x)

Lfλ(x) =
∂λ

∂x
(x) · f(x)

Lk
fλ(x) =

∂

∂x

(
Lk−1

f λ(x)
)
f(x),
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1. Nonlinear Systems -
Fundamentals & Examples

2. Nonlinear Systems - Stability
Notions

3. Linear Systems and Linearization

4. Frequency Domain Analysis

5. Discrete Time Systems

6. Absolute Stability

7. Input-to-State Stability

Part II: Controller Design

8. LMI Based Controller and
Antiwindup Designs

9. Control Lyapunov Functions

10. Sliding Mode Control

11. Adaptive Control

12. Introduction to Differential
Geometric Methods

13. Output Regulation

14. Optimal Control

15. Model Predictive Control

Part III: Observer Design & Estimation
16. Observer Design for Linear

Systems

17. Extended & Unscented Kalman
Filter & Moving Horizon
Estimation

18. Observer Design for Nonlinear
Systems
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