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Introductory Examples: (Example 1)

Consider (nonlinear system)
=2+ u, Y==a.

Goal: Stabilize the state/output y = = = 0.
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Introductory Examples: (Example 1)

Consider (nonlinear system)
i=a*4u, y=uz.
Goal: Stabilize the state/output y = = = 0.

Solution: Linear Controller Design
@ Linearization about the origin:

T =u
@ Natural stabilizing controller selection

u=—kzx (k> 0)
@ Nonlinear closed loop dynamics:

i=x(x*—k), z°€{0,+Vk}.
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Introductory Examples: (Example 1)

Consider (nonlinear system)
i=a*4u, y=uz.
Goal: Stabilize the state/output y = = = 0.

Solution: Linear Controller Design
@ Linearization about the origin:
T =u
@ Natural stabilizing controller selection

u=—kzx (k> 0)
@ Nonlinear closed loop dynamics:

i=x(x*—k), z°€{0,+Vk}.

Note that:
@ Origin is locally asymptotically stable.
@ Region of attraction increases with k.
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Introductory Examples: (Example 1)

Consider (nonlinear system) Nonlinear Controller Design:

t=z4u y=uz. @ Consider the nonlinear feedback

3 .
Goal: Stabilize the state/output y = = = 0. u=—z" +wv, v tobe designed
@ Closed-loop system & =wv

Solution: Linear Controller Design o Natural feedback selection

. v=—kx (k>0)
T=u @ Closed-loop system:
@ Natural stabilizing controller selection

@ Linearization about the origin:

&= —kz (with globally as. stable origin)

u=—kzx (k> 0) @ Overall feedback law:
@ Nonlinear closed loop dynamics:

.3
i=a(a® —k), z°ec{0,+Vk}. u=—at = ke
Note that:

@ Origin is locally asymptotically stable.

@ Region of attraction increases with k.
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Introductory Examples: (Example 1)

Consider (nonlinear system)
=2+ u, Y==a.
Goal: Stabilize the state/output y = = = 0.
Solution: Linear Controller Design
@ Linearization about the origin:

T =u
@ Natural stabilizing controller selection

u=—kzx (k> 0)
@ Nonlinear closed loop dynamics:

i=a(® —k), z°e€{0,+Vk}.
Note that:

@ Origin is locally asymptotically stable.
@ Region of attraction increases with k.

Nonlinear Controller Design:
@ Consider the nonlinear feedback

u=—2°4v, wvtobe designed
@ Closed-loop system & =wv

@ Natural feedback selection

v=—kx (k>0)
@ Closed-loop system:

&= —kz (with globally as. stable origin)
@ Overall feedback law:

uw=—x°—kz
Note that:

@ Coordinate transformation leads to a linear system
@ Global instead of local asymptotic stability
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Introductory Examples: (Example 2)

Consider second-order system
. 2
T = X2 + 7
To = —290113 — 2122 + 1

y=o
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Introductory Examples: (Example 2)

Consider second-order system
. 2
T = X2 + 7
To = —295:13 — 2122 + 1
y=o
Consider change of coordinates
21 = T1

2
Zz2 = T2 + X
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Introductory Examples: (Example 2)

Consider second-order system
. 2
T = X2 + 7
To = —296? — 2122 + 1
Yy=x
Consider change of coordinates
21 = T1
2
22 = X2 + 7
System in new coordinates:
Z1 = 22
2o = X9+ 2211 =u
Y=z,

Note that: The system is linear in z!
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Introductory Examples: (Example 2)

Consider second-order system Linear/Nonlinear feedback law (k1, k2 > 0):
T1 = X2 + Ji% u=—kiz1 — kozo
To = —2LE? —2x172 +u = —kiz1 — ko (1‘2 + 1‘%)
Yy=x
Consider change of coordinates Global asymptotic stability of the origin can be easily
verified by checking the eigenvalues of the linear
Z1 =1 closed-loop system.

2
22 = T2 + ]
System in new coordinates:
Z1 = 22
2o = X9+ 2211 =u
Y=z,

Note that: The system is linear in z!
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Introductory Examples: (Example 2)

Consider second-order system
. 2
T = X2 + 7
To = 72%? — 2122 + 1
Yy=x
Consider change of coordinates
zZ1 =1
2
22 = T2 + ]
System in new coordinates:
Z1 = 22
2o = To+ 20121 = u
Y=z,

Note that: The system is linear in z!

Linear/Nonlinear feedback law (k1, k2 > 0):

u = —k121 — k‘QZQ

= —kiz1 — ko (332 +4 m%)

verified by checking the eigenvalues of the linear

Global asymptotic stability of the origin can be easily
closed-loop system. J

Note that:

@ Coordinate transformation allows us to stabilize
and analyze a linear system instead of a nonlinear
system.

@ r — 0is equivalentto z — 0.

@ For the input-output behavior it is not important if
the dynamics are written in terms of = or z.

C.M. Kellett & P. Braun Introduction to Nonlinear Control (Ch. 12) Introduction to Differential Geometric Methods 3/6



Introductory Examples: (Example 3)

Consider the nonlinear system:

$1:$2

. 3

To =3+ U Yy =T,
. 3

T3 = T1 + X3

Consider change of coordinates:
z1 = T3
Z2 =X + x%
23 = X9 + 3:61:0% + 33:2.

and initial feedback (with v to be designed):

3 2 2 4 7
u = —x3 — 3rax3 — 6273 — 21lT1203 — 1523 + W,
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Introductory Examples: (Example 3)

Consider the nonlinear system:

Ztlzl’z

. 3

To =3+ U Yy =T,
. 3

T3 = X1 + X3

Consider change of coordinates:

Z1 = I3
3
Z2 = X1 + I3
23 = X9 + 3:61:0% + 33:2.

and initial feedback (with v to be designed):
u = —xg — Smgmg — 6ziTs — 21m1x§ — 153@5 + v,
Leads to linear states (but a nonlinear output):
21 = 2o

%o = 23 Y=z — 25 (1)
2.13:1)
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Introductory Examples: (Example 3)

Consider the nonlinear system: The feedback law

i’l =2 _ .3

¢2:x§+u y= a1, u=—-r3+v

. 3 . . .

T3 = T1 + X3 Leads to linear input-output relationship from v to y:
Consider change of coordinates: 1 = o

_ To =0 Yy=1x (2)
1= T3 &3 = a1+ x5

3
Z2 = X1 + I3
23 = X9 + 3x1x§ + 3:(;3.

and initial feedback (with v to be designed):
u = —a:g — Smgmg — 6ziTs — 213:133% — 153@5 + v,

Leads to linear states (but a nonlinear output):

21:Z2

. 3

%9 = 23 Yy =22 — 2] (1)
2.13:1)
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Introductory Examples: (Example 3)

Consider the nonlinear system:

i’l:l’z

. 3

To =3+ U Yy =1,
. 3

T3 = T1 + X3

Consider change of coordinates:

Z1 = I3
3
Z2 = X1 + I3
23 = Ta + 3x123 + 323,

and initial feedback (with v to be designed):

3 2 2 4 7
u = —x3 — 3r2x3 — 613 — 21123 — 15723 + W,

Leads to linear states (but a nonlinear output):

21 =22
: 3
Z2 = Z3 =Z2— 21
2.:3:1)

The feedback law
u = —acg +v
Leads to linear input-output relationship from v to y:
$.1 =2
To = Yy =2x1 @)
T3 =1 + l’g
Here,

@ we are able to partially linearize the dynamics
@ the “internal” (nonlinear) x3 dynamics, are not
visible through the output

@ for (1), v can be defined such that the origin z = 0
is asymptotically stable (i.e., y converges to zero).

@ for (2) a controller guaranteeing y(t) — 0 for

t — oo can be defined using pole placement.
(But is the origin asymptotically stable?)
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In this chapter we will discuss ...

Feedback linearization
@ Input-to-state linearization
@ Input-to-output linearization

Relies on properties such as
@ relative degree
@ zero dynamics
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In this chapter we will discuss ...

Relies on concepts such as
Feedback linearization

@ Input-to-state linearization
@ Input-to-output linearization

@ coordinate transformation of the state

@ coordinate transformation of the input

Relies on properties such as
@ relative degree
@ zero dynamics
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In this chapter we will discuss ...

Relies on concepts such as
Feedback linearization @ coordinate transformation of the state

@ Input-to-state linearization . ) .
pu : tzatl @ coordinate transformation of the input

@ Input-to-output linearization
@ (repeated) Lie derivatives
Relies on properties such as A:R" - R™, f:R" = R")

o relative degree LINz) = \(z)
@ zero dynamics
Y L) = 9 (@) f(2)
Uie) = 2 (15 @) f),
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In this chapter we will discuss ...

Relies on concepts such as
Feedback linearization @ coordinate transformation of the state
@ Input-to-state linearization . . .
pu ! @ coordinate transformation of the input

@ Input-to-output linearization
@ (repeated) Lie derivatives
Relies on properties such as AN:R" - R™, f:R" = R")

o relative degree LINz) = \(z)
@ zero dynamics (o2
Li@) = 5-(2) - ()

This also allows us to talk about o B
Li@) = 5= (L5"A@) f(@),

@ nonlinear controllability (accessibility) 7]
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