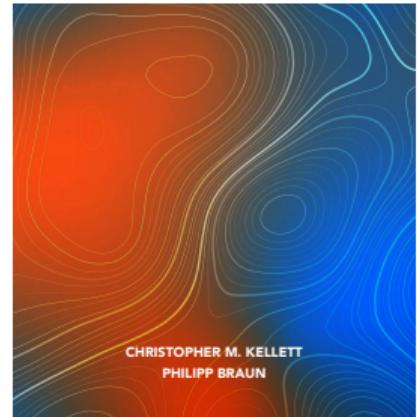


Introduction to Nonlinear Control

Stability, control design, and estimation

Christopher M. Kellett & Philipp Braun

Introduction to
Nonlinear Control
STABILITY, CONTROL DESIGN, AND ESTIMATION



Part II: Controller Design

11 Adaptive Control

11.1 Motivating Examples and Challenges

- 11.1.1 Limitations of Static Feedback Laws
- 11.1.2 Estimation-Based Controller Designs

11.2 Model Reference Adaptive Control

11.3 Adaptive Control for Nonlinear Systems

- 11.3.1 Adaptive Backstepping

- 11.3.2 Tuning Function Designs

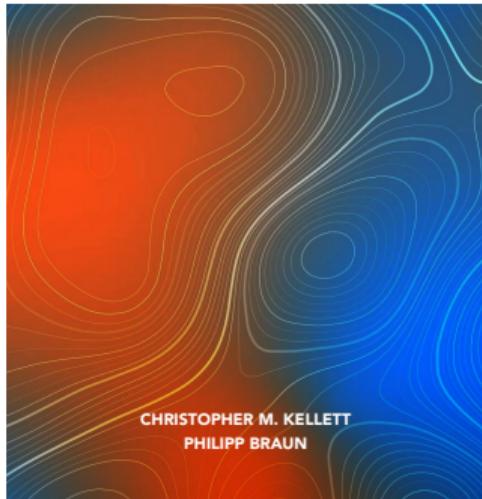
- 11.3.3 Application: Single Link Manipulator with Flexible Joint

11.4 Exercises

11.5 Bibliographical Notes and Further Reading

Introduction to Nonlinear Control

STABILITY, CONTROL DESIGN, AND ESTIMATION



Motivations and Examples

Consider a parameter-dependent system:

$$\dot{x} = f(x, u, \theta), \quad (\theta \in \mathbb{R}^q \text{ constant but unknown})$$

Goal: Stabilization of the origin.

Motivations and Examples

Consider a parameter-dependent system:

$$\dot{x} = f(x, u, \theta), \quad (\theta \in \mathbb{R}^q \text{ constant but unknown})$$

Goal: Stabilization of the origin.

Simple motivating example:

$$\dot{x} = \theta x + u$$

- **Linear controller:** For $u = -kx$ it holds that

$$\dot{x} = -(k - \theta)x$$

i.e., asymptotic stability for $(k - \theta) > 0$ and instability for $(k - \theta) < 0$.

Motivations and Examples

Consider a parameter-dependent system:

$$\dot{x} = f(x, u, \theta), \quad (\theta \in \mathbb{R}^q \text{ constant but unknown})$$

Goal: Stabilization of the origin.

Simple motivating example:

$$\dot{x} = \theta x + u$$

- **Linear controller:** For $u = -kx$ it holds that

$$\dot{x} = -(k - \theta)x$$

i.e., asymptotic stability for $(k - \theta) > 0$ and instability for $(k - \theta) < 0$.

- **What if a bound on $|\theta|$ is not known?**

Motivations and Examples

Consider a parameter-dependent system:

$$\dot{x} = f(x, u, \theta), \quad (\theta \in \mathbb{R}^q \text{ constant but unknown})$$

Goal: Stabilization of the origin.

Simple motivating example:

$$\dot{x} = \theta x + u$$

- **Linear controller:** For $u = -kx$ it holds that

$$\dot{x} = -(k - \theta)x$$

i.e., asymptotic stability for $(k - \theta) > 0$ and instability for $(k - \theta) < 0$.

- **What if a bound on $|\theta|$ is not known?**

- **Nonlinear controller:** $u = -k_1x - k_2x^3$, $k_1, k_2 \in \mathbb{R}_{>0}$,

$$\begin{aligned}\dot{x} &= (\theta - k_1)x - k_2x^3 \\ &= [(\theta - k_1) - k_2x^2]x\end{aligned}$$

Motivations and Examples

Consider a parameter-dependent system:

$$\dot{x} = f(x, u, \theta), \quad (\theta \in \mathbb{R}^q \text{ constant but unknown})$$

Goal: Stabilization of the origin.

Simple motivating example:

$$\dot{x} = \theta x + u$$

- **Linear controller:** For $u = -kx$ it holds that

$$\dot{x} = -(k - \theta)x$$

i.e., asymptotic stability for $(k - \theta) > 0$ and instability for $(k - \theta) < 0$.

- **What if a bound on $|\theta|$ is not known?**

- **Nonlinear controller:** $u = -k_1x - k_2x^3$, $k_1, k_2 \in \mathbb{R}_{>0}$,

$$\begin{aligned}\dot{x} &= (\theta - k_1)x - k_2x^3 \\ &= [(\theta - k_1) - k_2x^2]x\end{aligned}$$

- It holds that:

- ▶ $\theta \leq k_1$: unique equilibrium in \mathbb{R}

$$x^e = 0$$

- ▶ $\theta > k_1$: three equilibria in \mathbb{R}

$$x^e \in \left\{ 0, \pm \sqrt{\frac{\theta - k_1}{k_2}} \right\}$$

Motivations and Examples

Consider a parameter-dependent system:

$$\dot{x} = f(x, u, \theta), \quad (\theta \in \mathbb{R}^q \text{ constant but unknown})$$

Goal: Stabilization of the origin.

Simple motivating example:

$$\dot{x} = \theta x + u$$

- **Linear controller:** For $u = -kx$ it holds that

$$\dot{x} = -(k - \theta)x$$

i.e., asymptotic stability for $(k - \theta) > 0$ and instability for $(k - \theta) < 0$.

- **What if a bound on $|\theta|$ is not known?**

- **Nonlinear controller:** $u = -k_1x - k_2x^3$, $k_1, k_2 \in \mathbb{R}_{>0}$,

$$\begin{aligned}\dot{x} &= (\theta - k_1)x - k_2x^3 \\ &= [(\theta - k_1) - k_2x^2]x\end{aligned}$$

- It holds that:

- $\theta \leq k_1$: unique equilibrium in \mathbb{R}

$$x^e = 0$$

- $\theta > k_1$: three equilibria in \mathbb{R}

$$x^e \in \left\{ 0, \pm \sqrt{\frac{\theta - k_1}{k_2}} \right\}$$

- Consider $V(x) = \frac{1}{2}x^2$ which satisfies

$$\begin{aligned}\dot{V}(x) &= -k_1x^2 - k_2x^4 + \theta x^2 \\ &\leq -k_1x^2 - (k_2 - \frac{1}{2})x^4 + \frac{1}{2}\theta^2,\end{aligned}$$

thus it holds that

$$x(t) \xrightarrow{t \rightarrow \infty} S_\theta = \left\{ x \in \mathbb{R} \mid |x| \leq \sqrt{\frac{1}{k_1}|\theta|} \right\}$$

Motivations and Examples

Consider a parameter-dependent system:

$$\dot{x} = f(x, u, \theta), \quad (\theta \in \mathbb{R}^q \text{ constant but unknown})$$

Goal: Stabilization of the origin.

Simple motivating example:

$$\dot{x} = \theta x + u$$

- **Linear controller:** For $u = -kx$ it holds that

$$\dot{x} = -(k - \theta)x$$

i.e., asymptotic stability for $(k - \theta) > 0$ and instability for $(k - \theta) < 0$.

- **What if a bound on $|\theta|$ is not known?**

- **Nonlinear controller:** $u = -k_1x - k_2x^3$, $k_1, k_2 \in \mathbb{R}_{>0}$,

$$\begin{aligned}\dot{x} &= (\theta - k_1)x - k_2x^3 \\ &= [(\theta - k_1) - k_2x^2]x\end{aligned}$$

- It holds that:

- $\theta \leq k_1$: unique equilibrium in \mathbb{R}

$$x^e = 0$$

- $\theta > k_1$: three equilibria in \mathbb{R}

$$x^e \in \left\{ 0, \pm \sqrt{\frac{\theta - k_1}{k_2}} \right\}$$

- Consider $V(x) = \frac{1}{2}x^2$ which satisfies

$$\begin{aligned}\dot{V}(x) &= -k_1x^2 - k_2x^4 + \theta x^2 \\ &\leq -k_1x^2 - (k_2 - \frac{1}{2})x^4 + \frac{1}{2}\theta^2,\end{aligned}$$

thus it holds that

$$x(t) \xrightarrow{t \rightarrow \infty} S_\theta = \left\{ x \in \mathbb{R} \mid |x| \leq \sqrt{\frac{1}{k_1}|\theta|} \right\}$$

We can conclude that

- **Bound on θ known:** Global asymptotic stability of 0 can be guaranteed ($k_1 > \theta$)
- **Bound on θ not known:** Convergence to neighborhood around 0 can be guaranteed

Motivations and Examples: Dynamic Controller Design

Consider a parameter-dependent system:

$$\dot{x} = f(x, u, \theta), \quad (\theta \in \mathbb{R}^q \text{ constant but unknown})$$

Goal: Stabilization of the origin.

Simple motivating example:

$$\dot{x} = \theta x + u$$

Consider a dynamic controller:

$$u = -k_1 x - \xi x$$

$$\dot{\xi} = x^2$$

Motivations and Examples: Dynamic Controller Design

Consider a parameter-dependent system:

$$\dot{x} = f(x, u, \theta), \quad (\theta \in \mathbb{R}^q \text{ constant but unknown})$$

Goal: Stabilization of the origin.

Simple motivating example:

$$\dot{x} = \theta x + u$$

Consider a dynamic controller:

$$u = -k_1 x - \xi x$$

$$\dot{\xi} = x^2$$

- Closed loop dynamics

$$\begin{bmatrix} \dot{x} \\ \dot{\xi} \end{bmatrix} = \begin{bmatrix} \theta x - k_1 x - \xi x \\ x^2 \end{bmatrix}$$

- and in terms of error dynamics: $\hat{\theta} = \xi - \theta$

$$\begin{bmatrix} \dot{x} \\ \dot{\hat{\theta}} \end{bmatrix} = \begin{bmatrix} -\hat{\theta} x - k_1 x \\ x^2 \end{bmatrix}$$

Motivations and Examples: Dynamic Controller Design

Consider a parameter-dependent system:

$$\dot{x} = f(x, u, \theta), \quad (\theta \in \mathbb{R}^q \text{ constant but unknown})$$

Goal: Stabilization of the origin.

Simple motivating example:

$$\dot{x} = \theta x + u$$

Consider a dynamic controller:

$$\begin{aligned} u &= -k_1 x - \xi x \\ \dot{\xi} &= x^2 \end{aligned}$$

- Closed loop dynamics

$$\begin{bmatrix} \dot{x} \\ \dot{\xi} \end{bmatrix} = \begin{bmatrix} \theta x - k_1 x - \xi x \\ x^2 \end{bmatrix}$$

- and in terms of error dynamics: $\hat{\theta} = \xi - \theta$

$$\begin{bmatrix} \dot{x} \\ \dot{\hat{\theta}} \end{bmatrix} = \begin{bmatrix} -\hat{\theta} x - k_1 x \\ x^2 \end{bmatrix}$$

- Consider candidate Lyapunov function

$$V(x, \hat{\theta}) = \frac{1}{2} x^2 + \frac{1}{2} \hat{\theta}^2$$

which satisfies

$$\begin{aligned} \dot{V}(x, \hat{\theta}) &= (-\hat{\theta} x - k_1 x)x + \hat{\theta} x^2 \\ &= -k_1 x^2 \end{aligned}$$

- Then LaSalle-Yoshizawa theorem implies that
 - ▶ $x(t) \xrightarrow{t \rightarrow \infty} 0$ for all $(x_0, \xi_0) \in \mathbb{R}^2$
 - ▶ Convergence $\xi(t) \xrightarrow{t \rightarrow \infty} \theta$ is not guaranteed

Motivations and Examples: Dynamic Controller Design

Consider a parameter-dependent system:

$$\dot{x} = f(x, u, \theta), \quad (\theta \in \mathbb{R}^q \text{ constant but unknown})$$

Goal: Stabilization of the origin.

Simple motivating example:

$$\dot{x} = \theta x + u$$

Consider a dynamic controller:

$$\begin{aligned} u &= -k_1 x - \xi x \\ \dot{\xi} &= x^2 \end{aligned}$$

- Closed loop dynamics

$$\begin{bmatrix} \dot{x} \\ \dot{\xi} \end{bmatrix} = \begin{bmatrix} \theta x - k_1 x - \xi x \\ x^2 \end{bmatrix}$$

- and in terms of error dynamics: $\hat{\theta} = \xi - \theta$

$$\begin{bmatrix} \dot{x} \\ \dot{\hat{\theta}} \end{bmatrix} = \begin{bmatrix} -\hat{\theta} x - k_1 x \\ x^2 \end{bmatrix}$$

- Consider candidate Lyapunov function

$$V(x, \hat{\theta}) = \frac{1}{2} x^2 + \frac{1}{2} \hat{\theta}^2$$

which satisfies

$$\begin{aligned} \dot{V}(x, \hat{\theta}) &= (-\hat{\theta} x - k_1 x)x + \hat{\theta} x^2 \\ &= -k_1 x^2 \end{aligned}$$

- Then LaSalle-Yoshizawa theorem implies that

► $x(t) \xrightarrow{t \rightarrow \infty} 0$ for all $(x_0, \xi_0) \in \mathbb{R}^2$

► Convergence $\xi(t) \xrightarrow{t \rightarrow \infty} \theta$ is not guaranteed

Dynamic controller designs can be used to guarantee global convergence properties!

Model Reference Adaptive Control

- Consider linear systems

$$\dot{x} = Ax + Bu$$

with unknown matrices A, B .

- Goal:** Design a controller so that the unknown system behaves like

$$\dot{\bar{x}} = \bar{A}\bar{x} + \bar{B}u^e$$

- \bar{A}, \bar{B} : design parameters
- u^e : constant reference

Model Reference Adaptive Control

- Consider linear systems

$$\dot{x} = Ax + Bu$$

with unknown matrices A, B .

- Goal: Design a controller so that the unknown system behaves like

$$\dot{\bar{x}} = \bar{A}\bar{x} + \bar{B}u^e$$

- \bar{A}, \bar{B} : design parameters
- u^e : constant reference

- Note that: For \bar{A} Hurwitz, u^e defines asymp. stable equilibrium

$$\bar{x}^e = -\bar{A}^{-1}\bar{B}u^e$$

Model Reference Adaptive Control

- Consider linear systems

$$\dot{x} = Ax + Bu$$

with unknown matrices A, B .

- Goal: Design a controller so that the unknown system behaves like

$$\dot{\bar{x}} = \bar{A}\bar{x} + \bar{B}u^e$$

- \bar{A}, \bar{B} : design parameters
- u^e : constant reference

- Note that: For \bar{A} Hurwitz, u^e defines asymp. stable equilibrium

$$\bar{x}^e = -\bar{A}^{-1}\bar{B}u^e$$

- Control law:

$$u = M(\theta)u^e + L(\theta)x,$$

- $M(\cdot), L(\cdot)$, to be designed

Model Reference Adaptive Control

- Consider linear systems

$$\dot{x} = Ax + Bu$$

with unknown matrices A, B .

- Goal: Design a controller so that the unknown system behaves like

$$\dot{\bar{x}} = \bar{A}\bar{x} + \bar{B}u^e$$

- \bar{A}, \bar{B} : design parameters
- u^e : constant reference

- Note that: For \bar{A} Hurwitz, u^e defines asymp. stable equilibrium

$$\bar{x}^e = -\bar{A}^{-1}\bar{B}u^e$$

- Control law:

$$u = M(\theta)u^e + L(\theta)x,$$

- $M(\cdot), L(\cdot)$, to be designed

- Closed-loop dynamics:

$$\begin{aligned}\dot{x} &= Ax + B(M(\theta)u^e + L(\theta)x) \\ &= (A + BL(\theta))x + BM(\theta)u^e \\ &= A_{cl}(\theta)x + B_{cl}(\theta)u^e\end{aligned}$$

where

$$A_{cl}(\theta) = A + BL(\theta), \quad B_{cl}(\theta) = BM(\theta)$$

Model Reference Adaptive Control

- Consider linear systems

$$\dot{x} = Ax + Bu$$

with unknown matrices A, B .

- Goal: Design a controller so that the unknown system behaves like

$$\dot{\bar{x}} = \bar{A}\bar{x} + \bar{B}u^e$$

- \bar{A}, \bar{B} : design parameters
- u^e : constant reference

- Note that: For \bar{A} Hurwitz, u^e defines asymp. stable equilibrium

$$\bar{x}^e = -\bar{A}^{-1}\bar{B}u^e$$

- Control law:

$$u = M(\theta)u^e + L(\theta)x,$$

- $M(\cdot), L(\cdot)$, to be designed

- Closed-loop dynamics:

$$\begin{aligned}\dot{x} &= Ax + B(M(\theta)u^e + L(\theta)x) \\ &= (A + BL(\theta))x + BM(\theta)u^e \\ &= A_{\text{cl}}(\theta)x + B_{\text{cl}}(\theta)u^e\end{aligned}$$

where

$$A_{\text{cl}}(\theta) = A + BL(\theta), \quad B_{\text{cl}}(\theta) = BM(\theta)$$

- Compatibility conditions

$$\begin{aligned}A_{\text{cl}}(\theta) = \bar{A} &\iff BL(\theta) = \bar{A} - A, \\ B_{\text{cl}}(\theta) = \bar{B} &\iff BM(\theta) = \bar{B}.\end{aligned}$$

Model Reference Adaptive Control

- Consider linear systems

$$\dot{x} = Ax + Bu$$

with unknown matrices A, B .

- Goal: Design a controller so that the unknown system behaves like

$$\dot{\bar{x}} = \bar{A}\bar{x} + \bar{B}u^e$$

- \bar{A}, \bar{B} : design parameters
- u^e : constant reference

- Note that: For \bar{A} Hurwitz, u^e defines asymp. stable equilibrium

$$\bar{x}^e = -\bar{A}^{-1}\bar{B}u^e$$

- Control law:

$$u = M(\theta)u^e + L(\theta)x,$$

- $M(\cdot), L(\cdot)$, to be designed

- Closed-loop dynamics:

$$\begin{aligned}\dot{x} &= Ax + B(M(\theta)u^e + L(\theta)x) \\ &= (A + BL(\theta))x + BM(\theta)u^e \\ &= A_{cl}(\theta)x + B_{cl}(\theta)u^e\end{aligned}$$

where

$$A_{cl}(\theta) = A + BL(\theta), \quad B_{cl}(\theta) = BM(\theta)$$

- Compatibility conditions

$$\begin{aligned}A_{cl}(\theta) = \bar{A} &\iff BL(\theta) = \bar{A} - A, \\ B_{cl}(\theta) = \bar{B} &\iff BM(\theta) = \bar{B}.\end{aligned}$$

- Overall system dynamics

$$\begin{bmatrix} \dot{x} \\ \dot{\bar{x}} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} (A + BL(\theta))x + BM(\theta)u^e \\ A\bar{x} + Bu^e \\ \Psi(x, \bar{x}, u^e) \end{bmatrix}$$

for Ψ defined appropriately so that $x(t) \rightarrow \bar{x}(t)$

Systems in *parametric strict-feedback form*:

$$\dot{x}_1 = x_2 + \phi_1(x_1)^T \theta$$

$$\dot{x}_2 = x_3 + \phi_2(x_1, x_2)^T \theta$$

⋮

$$\dot{x}_{n-1} = x_n + \phi_{n-1}(x_1, \dots, x_{n-1})^T \theta$$

$$\dot{x}_n = \beta(x)u + \phi_n(x)^T \theta$$

where $\beta(x) \neq 0$ for all $x \in \mathbb{R}^n$

Adaptive Backstepping (for Nonlinear Dynamics)

Theorem

Let $c_i > 0$ for $i \in \{1, \dots, n\}$. Consider the adaptive controller

$$u = \frac{1}{\beta(x)} \alpha_n(x, \vartheta_1, \dots, \vartheta_n)$$

$$\dot{v}_i = \Gamma \left(\phi_i(x_1, \dots, x_i) - \sum_{j=1}^{i-1} \frac{\partial \alpha_{i-1}}{\partial x_j} \phi_j(x_1, \dots, x_j) \right) z_i, \quad i = 1, \dots, n,$$

Systems in *parametric strict-feedback form*:

$$\dot{x}_1 = x_2 + \phi_1(x_1)^T \theta$$

$$\dot{x}_2 = x_3 + \phi_2(x_1, x_2)^T \theta$$

⋮

$$\dot{x}_{n-1} = x_n + \phi_{n-1}(x_1, \dots, x_{n-1})^T \theta$$

$$\dot{x}_n = \beta(x)u + \phi_n(x)^T \theta$$

where $\beta(x) \neq 0$ for all $x \in \mathbb{R}^n$

where $\vartheta_i \in \mathbb{R}^q$ are multiple estimates of θ , $\Gamma > 0$ is the adaptation gain matrix, and the variables z_i and the stabilizing functions

$$\alpha_i = \alpha_i(x_1, \dots, x_i, \vartheta_1, \dots, \vartheta_i), \quad \alpha_i : \mathbb{R}^{i+i \cdot q} \rightarrow \mathbb{R}, \quad i = 1, \dots, n,$$

are defined by the following recursive expressions (and $z_0 \equiv 0$, $\alpha_0 \equiv 0$ for notational convenience)

$$z_i = x_i - \alpha_{i-1}(x_1, \dots, x_i, \vartheta_1, \dots, \vartheta_i)$$

$$\begin{aligned} \alpha_i &= -c_i z_i - z_{i-1} - \left(\phi_i - \sum_{j=1}^{i-1} \frac{\partial \alpha_{i-1}}{\partial x_j} \phi_j \right)^T \vartheta_i \\ &\quad + \sum_{j=1}^{i-1} \left(\frac{\partial \alpha_{i-1}}{\partial x_j} x_{j+1} + \frac{\partial \alpha_{i-1}}{\partial \vartheta_j} \Gamma \left(\phi_j - \sum_{k=1}^{j-1} \frac{\partial \alpha_{j-1}}{\partial x_k} \phi_k \right) z_j \right). \end{aligned}$$

This adaptive controller guarantees global boundedness of $x(\cdot)$, $\vartheta_1(\cdot)$, \dots , $\vartheta_n(\cdot)$, and $x_1(t) \rightarrow 0$, $x_i(t) \rightarrow x_i^e$ for $i = 2, \dots, n$ for $t \rightarrow \infty$ where

$$x_i^e = -\theta^T \phi_{i-1}(0, x_2^e, \dots, x_{i-1}^e), \quad i = 2, \dots, n.$$

Introduction to Nonlinear Control: Stability, control design, and estimation

Part I: Dynamical Systems

1. Nonlinear Systems - Fundamentals & Examples
2. Nonlinear Systems - Stability Notions
3. Linear Systems and Linearization
4. Frequency Domain Analysis
5. Discrete Time Systems
6. Absolute Stability
7. Input-to-State Stability

Part II: Controller Design

8. LMI Based Controller and Antiwindup Designs
9. Control Lyapunov Functions
10. Sliding Mode Control
11. Adaptive Control
12. Introduction to Differential Geometric Methods
13. Output Regulation
14. Optimal Control
15. Model Predictive Control

Part III: Observer Design & Estimation

16. Observer Design for Linear Systems
17. Extended & Unscented Kalman Filter & Moving Horizon Estimation
18. Observer Design for Nonlinear Systems