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Motivations and Examples

Consider a parameter-dependent system:
i = f(z,u,0), (€ RY constant but unknown)

Goal: Stabilization of the origin.
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Motivations and Examples

Consider a parameter-dependent system:
i = f(z,u,0), (€ RY constant but unknown)

Goal: Stabilization of the origin.
Simple motivating example:
T =060x+u
@ Linear controller: For u = —kx it holds that
z=—(k—0)x

i.e., asymptotic stability for (k — ) > 0 and instability
for (k —6) < 0.
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Simple motivating example:
T =060x+u
@ Linear controller: For u = —kx it holds that
z=—(k—0)x

i.e., asymptotic stability for (k — ) > 0 and instability
for (k —6) < 0.

@ What if a bound on |6] is not known?
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Motivations and Examples

Consider a parameter-dependent system:
i = f(z,u,0), (€ RY constant but unknown)

Goal: Stabilization of the origin.
Simple motivating example:

T =060x+u

@ Linear controller: For u = —kz it holds that
z=—(k—0)x

i.e., asymptotic stability for (k — ) > 0 and instability
for (k —6) < 0.

@ What if a bound on |6] is not known?
@ Nonlinear controller: uw = —kyx — kox®, k1, k2 € R,
&= (0 —k1)x — koa®
= [(0 — k1) — k22?] 2
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Motivations and Examples

Consider a parameter-dependent system:
i = f(z,u,0), (€ RY constant but unknown)

Goal: Stabilization of the origin.
Simple motivating example:

T =060x+u

@ Linear controller: For u = —kz it holds that
z=—(k—0)x

i.e., asymptotic stability for (k — ) > 0 and instability
for (k —6) < 0.

@ What if a bound on |6] is not known?
@ Nonlinear controller: uw = —kyx — kox®, k1, k2 € R,
&= (0 —k1)x — koa®
= [(0 — k1) — k22?] 2

@ |t holds that:
> 0 < kyp: unique equilibrium in R
¢ =0

> 0 > kip: three equilibria in R

2t {0,+/%50}
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Motivations and Examples

Consider a parameter-dependent system:
i = f(z,u,0), (€ RY constant but unknown)

Goal: Stabilization of the origin.

Simple motivating example:
&=0x+u

@ Linear controller: For u = —kx it holds that
z=—(k—0)x
i.e., asymptotic stability for (k — ) > 0 and instability
for (k —6) < 0.
@ What if a bound on |6] is not known?
@ Nonlinear controller: uw = —kyx — kox®, k1, k2 € R,
&= (0— k1) — koa®
= [(0 — k1) — k22?] 2

@ |t holds that:
> 0 < kyp: unique equilibrium in R
¢ =0

> 0 > kip: three equilibria in R
2t {0,+/%50}

@ Consider V(z) = 322 which satisfies

V(x) = k122 — koz* + 022
< —k1x2 — (kz — %)x‘l + %92,
thus it holds that

a(t) 250 Sy = {x € R’ |z] < \/g|9|}
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Motivations and Examples

Consider a parameter-dependent system:
i = f(z,u,0), (€ RY constant but unknown)

Goal: Stabilization of the origin.
Simple motivating example:
T =060x+u
@ Linear controller: For u = —kx it holds that
z=—(k—0)x

i.e., asymptotic stability for (k — ) > 0 and instability
for (k —6) < 0.
@ What if a bound on |6] is not known?

@ Nonlinear controller: uw = —kyx — kox®, k1, k2 € R,

&= (0 —k1)x — koa®
= [(0 — k1) — k22?] 2
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@ |t holds that:
> 0 < kyp: unique equilibrium in R
¢ =0

> 0 > kip: three equilibria in R
2t {0,+/%50}

@ Consider V(z) = 322 which satisfies

V(x) = k122 — koz* + 022
< —k1x2 — (kz — %)x‘l + %92,
thus it holds that

a(t) 250 Sy = {x € R’ |z] < \/g|9|}

We can conclude that

@ Bound on 6 known: Global asymptotic stability of 0
can be guaranteed (k1 > 6)

@ Bound on ¢ not known: Convergence to neighborhood
around 0 can be guaranteed

(Ch. 11) Adaptive Control 2/6



Motivations and Examples: Dynamic Controller Design

Consider a parameter-dependent system:

z = f(z,u,0), (6 € R? constant but unknown)

Goal: Stabilization of the origin.

Simple motivating example:

T=0x+u
Consider a dynamic controller:
u=—kix— &
¢=a?
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Motivations and Examples: Dynamic Controller Design

Consider a parameter-dependent system:

z = f(z,u,0), (0 € RY constant but unknown)

Goal: Stabilization of the origin.

Simple motivating example:

T=0x+u
Consider a dynamic controller:
u=—kix— &
{=a°

@ Closed loop dynamics

o] =]

@ and in terms of error dynamics: 6 = £ — 6

4] s
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Motivations and Examples: Dynamic Controller Design

Consider a parameter-dependent system:

z = f(z,u,0), (6 € R? constant but unknown)
@ Consider candidate Lyapunov function

V(z,0) = %xz + %éQ

which satisfies

Goal: Stabilization of the origin.

Simple motivating example:

& =0z+u V(x,0) = (—0x — k1z)z + Oz
Consider a dynamic controller: = k22
S
v , 1 —&w @ Then LaSalle-Yoshizawa theorem implies that
{==

> z(t) "25° 0 for all (zo, &) € R2

@ Closed loop dynamics

o] =]

@ and in terms of error dynamics: 6 = £ — 6

4] s

» Convergence &(t) “28° 9 is not guaranteed
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Motivations and Examples: Dynamic Controller Design

Consider a parameter-dependent system:

z = f(z,u,0), (6 € R? constant but unknown)

@ Consider candidate Lyapunov function
Goal: Stabilization of the origin. Vi(z,0) = %wg i %ég

Simple motivating example: which satisfies

V(x,0) = (—0x — k1z)z + Oz

= —ki2?

T=0x+u
Consider a dynamic controller:
u=—kix— &

. ) @ Then LaSalle-Yoshizawa theorem implies that
E=u

> z(t) "25° 0 for all (zo, &) € R2

@ Closed loop dynamics

o] =]

@ and in terms of error dynamics: 6 = £ — 6

4] s

» Convergence &(t) “28° 9 is not guaranteed

Dynamic controller designs can be used to guarantee
global convergence properties! J
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Model Reference Adaptive Control

@ Consider linear systems
T = Az + Bu
with unknown matrices A, B.

@ Goal: Design a controller so that the unknown system
behaves like

Z = AZ + Buf

» A, B: design parameters
» uf: constant reference
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Model Reference Adaptive Control

@ Consider linear systems
T = Az + Bu
with unknown matrices A, B.

@ Goal: Design a controller so that the unknown system
behaves like

z = Az + Bu®
» A, B: design parameters
» uf: constant reference

@ Note that: For A Hurwitz, u¢ defines asymp. stable
equilibrium
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Model Reference Adaptive Control

@ Consider linear systems
T = Az + Bu
with unknown matrices A, B.

@ Goal: Design a controller so that the unknown system
behaves like

Z = AZ + Buf

» A, B: design parameters
» uf: constant reference

@ Note that: For A Hurwitz, u¢ defines asymp. stable
equilibrium

@ Control law:
u= M(O)u®+ L(0)z,

» M(-), L(-), to be designed
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Model Reference Adaptive Control

@ Consider linear systems
T = Ax + Bu
with unknown matrices A, B.

@ Goal: Design a controller so that the unknown system
behaves like

z = Az + Bu®
» A, B: design parameters
» uf: constant reference

@ Note that: For A Hurwitz, u¢ defines asymp. stable
equilibrium

@ Control law:
u= M(O)u®+ L(0)z,

» M(-), L(-), to be designed

@ Closed-loop dynamics:
z = Az + B(M(0)u® + L(0)x)
= (A+ BL(0))x + BM(0)u®
= Ac(8)z + Bg(0)u®
where
Aaq(0) = A+ BL(9), B (8) = BM(0)
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Model Reference Adaptive Control

@ Consider linear systems
T = Ax + Bu
with unknown matrices A, B.

@ Goal: Design a controller so that the unknown system
behaves like

z = Az + Bu®
» A, B: design parameters
» uf: constant reference

@ Note that: For A Hurwitz, u¢ defines asymp. stable
equilibrium

@ Control law:
u= M(O)u®+ L(0)z,

» M(-), L(-), to be designed

@ Closed-loop dynamics:
z = Az + B(M(0)u® + L(0)x)
= (A+ BL(0))x + BM(0)u®
= Ag(0)x + Be(0)u”
where
Aaq(0) = A+ BL(9), B (8) = BM(0)

@ Compatibility conditions

= BL(0) = A — A,
By(0) =B = BM(9) =B

@
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Model Reference Adaptive Control

@ Consider linear systems
T = Ax + Bu
with unknown matrices A, B.

@ Goal: Design a controller so that the unknown system
behaves like

z = Az + Bu®
» A, B: design parameters
» uf: constant reference

@ Note that: For A Hurwitz, u¢ defines asymp. stable
equilibrium

@ Control law:
u= M(O)u®+ L(0)z,

» M(-), L(-), to be designed

@ Closed-loop dynamics:
z = Az + B(M(0)u® + L(0)x)
= (A+ BL(0))x + BM(0)u®
= Ag(0)x + Be(0)u”
where
Aaq(0) = A+ BL(9), B (8) = BM(6)

@ Compatibility conditions
Ag(0) = A — BL(A) = A — A,
By(9) = B = BM(9) = B.
@ Overall system dynamics
{_x_] [ (A + BL(0))x + BM(0)u®
z | =

AZ + Bu®
U (z, T, u®)

for ¥ defined appropriately so that z(t) — z(t)
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Adaptive Backstepping (for Nonlinear Dynamics)

Systems in parametric strict-feedback form:
T = x9 + (;51 (:v]_)Te

to = x3 + pa(z1,22)70

En_1=Tn + Pn-1(x1,. .., Tn_1)T0
B@)u + én ()"0
where 8(z) # 0 for all z € R™

Tn
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Adaptive Backstepping (for Nonlinear Dynamics)

Systems in parametric strict-feedback form:

i1 =z + ¢1(x1)70

&2 = a3 + ¢o(x1,22)T0

En—1=Tn + n-1(z1,...,2n—1)T0
En = B(x)u + d)n(x)TH
where B(z) # 0 for allz € R™
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Theorem
Letc; > 0 fori € {1,...,n}. Consider the adaptive controller

u = giyan(z,91,...,9n)
9 =T (#i(a1,.,20) - Tidh it dy(on, . o3)) 2, i=1,00m,

where ¥, € R? are multiple estimates of 6, I > 0 is the adaptation gain
matrix, and the variables z; and the stabilizing functions

a; = ai(T1,. .., @i, 01, ..., 04), a; R7THT L R i=1,...,n,

are defined by the following recursive expressions (and zop = 0, ag = 0 for
notational convenience)

zi =T — i1 (21, .., @i, 01, ..., 9)
1 8a
ai:*Cizi*Zi71*(¢z* l_ =1 J) s
i—1 ((Oai—1 LT j—1 9aj_1
+ X (a; i1 + 2 r(¢j_ 121 %5t k) ;) -

This adaptive controller guarantees global boundedness of z(-), 91 (-),
. On(-), and z1(t) — 0, x;(t) — x§ fori = 2,...,n fort — co where

) .
2§ = =07 6i_1(0,a5,...,25_y),  i=2...,n
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