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Setting & Motivation: Sliding Mode Controller Design

We consider systems of the form

ẋ = f(x, u, δ(t, x))

y = h(x)

with
state x ∈ Rn

input u ∈ Rm

output y ∈ R
potentially time and state dependent unknown
disturbance δ : R≥0 × Rn → Rn

We will be interested in
stabilizing the origin

despite the presence of the disturbance.

⇝ First we have to discuss finite-time stability.
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From Asymptotic Stability . . .

Definition (Asymptotic Stability)
Consider ẋ = f(x) with f(0) = 0.

The origin is (Lyapunov) stable if, for any ε > 0 there
exists δ = δ(ε) > 0 such that if

|x(0)| ≤ δ implies |x(t)| ≤ ε ∀ t ≥ 0.

The origin is attractive if there exists δ > 0 such that if
|x(0)| < δ then

lim
t→∞

x(t) = 0.

The origin is asymptotically stable for ẋ = f(x) if it is
both stable and attractive.

Theorem (Asymptotic stability theorem)

Suppose there exist V : Rn → R≥0 , α1, α2 ∈ K∞ and
ρ ∈ P such that, for all x ∈ Rn,

α1(|x|) ≤ V (x) ≤ α2(|x|)
⟨∇V (x), f(x)⟩≤ −ρ(|x|)

Then the origin is (globally) asymptotically stable.
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. . . to Finite-Time Stability

Definition (Finite-time stability)

Consider ẋ = f(x) with f(0) = 0.
The origin is globally finite-time stable if there exists
T : Rn\{0} → (0,∞), called the settling-time function,
such that the following hold:

(Stability)
∀ ε > 0 ∃ δ > 0 such that, x(0) ∈ Bδ\{0} implies

x(t) ∈ Bε ∀ t ∈ [0, T (x0))

(Finite-time convergence)
∀ x(0) ∈ Rn\{0},

▶ x(·) is defined on [0, T (x0)),
▶ x(t) ∈ Rn\{0} for all t ∈ [0, T (x0))
▶ x(t) → 0 for t → T (x0).

Theorem (Lyapunov fcn for finite-time stability)

Assume there exist a continuous function V : Rn → R≥0,
which is continuously differentiable on Rn\{0},
α1, α2 ∈ K∞ and a constant κ > 0 such that

α1(|x|) ≤ V (x) ≤ α2(|x|),

V̇ (x) = ⟨∇V (x), f(x)⟩ ≤ −κ
√

V (x) ∀x ̸= 0.

Then the origin is globally finite-time stable.

Moreover, the settling-time T (x) : Rn → R≥0 is upper
bounded by

T (x) ≤ 2
κ

√
α2(|x|).
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Finite-Time Stability (Example)

Example

Consider

ẋ = f(x) = − sign(x)
3
√
x2.

We can verify

x(t) =

{
− 1

27
sign(x(0))(t− 3 3

√
|x(0)|)3 if t ≤ 3 3

√
|x(0)|

0 if t ≥ 3 3
√

|x(0)|

Once the equilibrium is reached, the inequalities

− sign(x)
3
√
x2 < 0 for all x > 0, and

− sign(x)
3
√
x2 > 0 for all x < 0

ensure that the origin is attractive.
One can show that

The origin is finite-time stable (with Lyapunov fcn
V (x) =

3
√
x2)

Settling time T (x) = 3 3
√

|x|
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Basic Sliding Mode Control

As an example, consider:

ẋ = x3 + z,

ż = u+ δ(t, x, z).

Unknown disturbance δ : R≥0 × R2 → R
Assumption: there exists Lδ ∈ R>0 such that

|δ(t, x, z)| ≤ Lδ (t, x, z) ∈ R≥0 × R2

Thus, δ is bounded but not necessarily continuous

Goal: Exponential stability of the x-subsystem
I.e., we want x to behave as ẋ = −x (for all bounded
disturbances)

The desired behavior implies ẋ+ x = 0

Thus

x3 + z + x = 0

Approach: Define a new state

σ
.
= x3 + z + x and V (σ) = 1

2
σ2

Then

V̇ (σ) = σσ̇ = σ
(
3x2ẋ+ ż + ẋ

)
= σ

(
3x5 + 3x2z + u+ δ(t, x, z) + x3 + z

)
.

To cancel the known terms define

u = v − 3x5 − 3x2z − x3 − z

so that V̇ (σ) = σ (v + δ(t, x, z)) (with new input v)

Selecting v = −ρ sign(σ), ρ > 0, provides the estimate

V̇ (σ) = σ (−ρ sign(σ) + δ(t, x, z)) = −ρ|σ|+ σδ(t, x, z)

≤ −ρ|σ|+ Lδ|σ| = −(ρ− Lδ)|σ|.

Finally, with ρ = Lδ + κ√
2

, κ > 0, we have

V̇ (σ) ≤ −
κ|σ|
√
2

= −α
√

V (σ)⇝ finite-time stab. of σ = 0

Note that the control

u = −
(
Lδ + κ√

2

)
sign

(
x3+z+x

)
−3x5−3x2z−x3−z

is independent of the term δ(t, x, z).
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disturbances)

The desired behavior implies ẋ+ x = 0
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Basic Sliding Mode Control – Explicit Example

Consider:

ẋ = x3 + z,

ż = u+ δ(t, x, z).

Control law:

u = −
(
Lδ + κ√

2

)
sign

(
x3+z+x

)
−3x5−3x2z−x3−z

Parameter selection for the simulations:
Lδ = 1 and κ = 2

δ(t, x, z) = sin(t) (top)

δ(t, x, z) = sign(cos(2t) sin(2t)) (bottom)

We observe that
σ converges to zero in finite-time

Afterwards (x, z) asymptotically approach the origin

Since the ordinary differential equation is solved
numerically, σ is not exactly zero!

Convergence structure:
⇝ Similar to backstepping/forwarding
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