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Setting & Motivation: Sliding Mode Controller Design

We consider systems of the form
z = f(z,u,d(t, x))
y = h(z)
with
@ state x € R™
@ inputu € R™
@ outputy €R

@ potentially time and state dependent unknown
disturbance § : R>o x R® — R"™

We will be interested in
@ stabilizing the origin
despite the presence of the disturbance.

~ First we have to discuss finite-time stability.
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From Asymptotic Stability . ..

Definition (Asymptotic Stability)
Consider & = f(z) with f(0) = 0.

@ The origin is (Lyapunov) stable if, for any € > 0 there

exists & = d(g) > 0 such that if
|z(0)] <&  implies  |z(t)]<e Vt>0.

@ The origin is attractive if there exists § > 0 such that if
|z(0)| < 6 then

tl_l}rgQ z(t) = 0.

@ The origin is asymptotically stable for & = f(z) if it is
both stable and attractive.
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Theorem (Asymptotic stability theorem)

Suppose there exist VV : R™ — R>q , a1, a2 € Koo and
p € P such that, for all z € R™,
a1(|z]) < V() < az(|z])
(VV(2), f(x))< —p(|z])
Then the origin is (globally) asymptotically stable.
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... to Finite-Time Stability

Definition (Finite-time stability)
Theorem (Lyapunov fcn for finite-time stability)
Consider & = f(z) with f(0) = 0.

The origin is globally finite-time stable if there exists Assume there exist a continuous function V : R™ — R,
T : R™"\{0} — (0, 00), called the settling-time function, which is continuously differentiable on R™\ {0}, -
such that the following hold: a1, as € Koo and a constant x > 0 such that

L (i) a(j2l) < V(@) < az(fal),

Ve > 034 > 0such that, z(0) € Bs\{0} implies

o) €B.  Vte [0, T(x)) V(z) =(VV(2), f(x)) < —rky/V(z) Vo #0.

Then the origin is globally finite-time stable.

@ (Finite-time convergence . , .
(Finite-ti Verg ) Moreover, the settling-time T'(x) : R™ — R>q is upper

v (0) € R™\{0}, bounded by
-) is defined 0,7 ,
e ol T() < 2\/aa(leD).

z(t) — 0fort — T'(zo).
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Finite-Time Stability (Example)

Example

Consider

z = f(z) = —sign(x) Va2,

We can verify

(1) {—% sign(x(o))(()t -3Y/[e(0))?

if t < 33/[z(0)]
it > 33/[z(0)]

Once the equilibrium is reached, the inequalities

—sign(x) Va2 < Oforallz >0, and

— sign(z) Va2 > 0 forall z < 0
ensure that the origin is attractive.

One can show that

@ The origin is finite-time stable (with Lyapunov fcn

V(z) = Vz2?)

@ Settling time T'(z) = 3{/|z|

V.
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Basic Sliding Mode Control

As an example, consider:
=23+ z,
Z=u+4d(tx,z).
@ Unknown disturbance 6 : R>o x R? — R
@ Assumption: there exists Ls € R~ such that
|6(t,z, 2)| < Ls (t,z,z) € R>g x R2

@ Thus, 4 is bounded but not necessarily continuous
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Basic Sliding Mode Control

As an example, consider:
=23+ z,
Z=u+4d(tx,z).
@ Unknown disturbance 6 : R>o x R? — R
@ Assumption: there exists Ls € R~ such that
|6(t,z, 2)| < Ls (t,z,z) € R>g x R2
@ Thus, 4 is bounded but not necessarily continuous

Goal: Exponential stability of the z-subsystem

@ l.e., we want z to behave as © = —z (for all bounded
disturbances)

@ The desired behavior implies z + = 0
@ Thus

2 +z24+42=0
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Basic Sliding Mode Control

@ Then
V(e)=c6=0 (3:1:21'7—1-24-3’3)
= a(3z5 +322z +u+6(t,x, 2) + 23 +z).

As an example, consider:
&=z + 2,
Z=u+4d(tx,z).
@ Unknown disturbance 6 : R>o x R? — R
@ Assumption: there exists Ls € R~ such that
|6(t,z, 2)| < Ls (t,z,2) € Ryg x R?
@ Thus, 4 is bounded but not necessarily continuous

Goal: Exponential stability of the z-subsystem

@ l.e., we want z to behave as © = —z (for all bounded
disturbances)

@ The desired behavior implies z +x =0
@ Thus

B 4z4+2=0
Approach: Define a new state

oc=z>+z+z and V(a):%a2
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Basic Sliding Mode Control

@ Then
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= a(3x5 +322z +u+6(t,x, 2) + 23 +z).

As an example, consider:
&=z + 2,
Z=u+4d(tx,z).

@ To cancel the known terms define

@ Unknown disturbance § : R>o x R2 = R 5 ) 5
. i - =v—32° — 32?2 — 2% —
@ Assumption: there exists Ls € R~ such that w=v v rveTT i

6(t,2,2)| < Ls  (t,3,2) € Rog X R2 sothat V(o) =0 (v+d(t,x,z)) (with new input v)
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As an example, consider:
=23+ z,
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|6(t,z, 2)| < Ls (t,z,z) € R>g x R2
@ Thus, J is bounded but not necessarily continuous
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@ The desired behavior implies z +x =0
@ Thus

2 +z24+42=0
Approach: Define a new state
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Then
V(e)=c6=0 (3:7:2m' + 2+ i)
= a(3x5 +322z +u+6(t,x, 2) + 23 +z).
To cancel the known terms define
wu=v—32% 322z —2% -2
sothat V(o) =0 (v+d(t,x,z)) (with new input v)
Selecting v = —p sign(o), p > 0, provides the estimate
V(o) = o (—p sign(o) + 6(t, z, 2)) = —plo| + o6(t, x, 2)
< —plo| + Lslo| = —(p — Ls)|o].
Finally, with p = Ls + % x> 0, we have

V(o) < — = —a/V (o) ~ finite-time stab. of o = 0

sl3
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Then
V(e)=c6=0 (3:7:2m' + 2+ i)
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sl3

Note that the control

0]

— (L(; + %) sign (z3+z+a:) —3z% 3222 —2% 2
is independent of the term 46(¢, z, 2).
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Basic Sliding Mode Control — Explicit Example

Consider:
&=+ 2,
Z=u+46(tz,z).

Control law:

U= — (L(; + %) sign (m3+z+x) —32°—322z—a%—2

Parameter selection for the simulations:

@ Lsy=1landk =2
@ 0(t,z, z) = sin(t) (top)

@ 0(t,x, z) = sign(cos(2t) sin(2t)) (bottom)

10
ol

-10
0
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Basic Sliding Mode Control — Explicit Example

Consider:
2+ z,
Z=u+46(tz,z).

IS
Il

Control law:
U= — (L(; + %) sign (:r3+z+x) —32°—322z—a%—2
Parameter selection for the simulations:
@ Lsg=landk =2
@ 0(t,z, z) = sin(t) (top)
@ 0(t,x, z) = sign(cos(2t) sin(2t)) (bottom)
We observe that
@ o converges to zero in finite-time
@ Afterwards (z, z) asymptotically approach the origin

@ Since the ordinary differential equation is solved
numerically, o is not exactly zero!
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Basic Sliding Mode Control — Explicit Example

Consider:
&=+ 2,
Z=u+46(tz,z).
2 0
Control law:
U= — (L(; + %) sign (:r3+z+x) —32°—322z—a%—2

Parameter selection for the simulations:

@ Ly=1landk =2 S

0 1
® 4(t, x,z) = sin(?) (top) 0.75 ’
® §(t,x,z) = sign(cos(2t) sin(2t)) (bottom) [T 7=0
07} —((),2(1))
We observe that
@ o converges to zero in finite-time 0.65
@ Afterwards (z, z) asymptotically approach the origin A
0.6 A
@ Since the ordinary differential equation is solved %
numerically, o is not exactly zero! 055 M\w\
Convergence structure:
~ Similar to backstepping/forwarding 03 s 05 045
xX
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