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Control Lyapunov Functions

Recall the dynamical system consider:

ẋ = f(x) with f(0) = 0, x ⊂ Rn

Theorem (Asymptotic stability theorem)

Suppose there exists a continuously differentiable
function V : Rn → R≥0 , α1, α2 ∈ K∞ and ρ ∈ P
such that, for all x ∈ Rn,

α1(|x|) ≤ V (x) ≤ α2(|x|)
⟨∇V (x), f(x)⟩≤ −ρ(|x|)

Then the origin is (globally) asymptotically stable.

Now consider dynamical system with input

ẋ = f(x, u)

Goal: Define u = k(x) asymptotically stabilizing the origin.
Control Lyapunov function: V : Rn → R≥0

In terms of a feedback law u = k(x),
d
dt
V (x(t)) = ⟨∇V (x), f(x, k(x))⟩ < 0, ∀ x ̸= 0

⇝ V is a Lyapunov function for ẋ = f(x, k(x)) = f̃(x)

For each x ̸= 0 we can find u such that
d
dt
V (x(t)) = ⟨∇V (x), f(x, u)⟩ < 0

Definition (Control Lyapunov function (CLF))
Let α1, α2 ∈ K∞. A continuously differentiable function
V : Rn → R≥0 is called control Lyapunov function for ẋ = f(x, u) if

α1(|x|) ≤ V (x) ≤ α2(|x|), ∀ x ∈ Rn,

and for all x ∈ Rn\{0} there exists u ∈ Rm such that

⟨∇V (x), f(x, u)⟩ < 0.
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Sontag’s Universal Formula

Question:
If we know a CLF, how to define a feedback law?

Consider
a control affine system (u ∈ R)

ẋ = f(x) + g(x)u

with corresponding CLF V , i.e.,

⟨∇V (x), f(x) + g(x)u)⟩ < 0 ∀x ̸= 0

Alternative representation of the decrease condition:

LfV (x) < 0 ∀ x ∈ Rn\{0} such that LgV (x) = 0

where

LfV (x) = ⟨∇V (x), f(x)⟩ and LgV (x) = ⟨∇V (x), g(x)⟩

Then
for κ > 0 we can define the feedback law

k(x) =

 −
(
κ+

LfV (x)+
√

LfV (x)2+LgV (x)4

LgV (x)2

)
LgV (x), LgV (x) ̸= 0

0, LgV (x) = 0

The feedback law
asymptotically stabilizes the origin

inherits the regularity properties of
the CLF except at the origin

is continuous at the origin if the CLF
satisfies a small control property (i.e.,
|k(x)| → 0 for |x| → 0)

Note that: Formula known as
Universal formula

Sontag’s formula

(Derived by Eduardo Sontag)
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ẋ = f(x) + g(x)u

with corresponding CLF V , i.e.,

⟨∇V (x), f(x) + g(x)u)⟩ < 0 ∀x ̸= 0

Alternative representation of the decrease condition:

LfV (x) < 0 ∀ x ∈ Rn\{0} such that LgV (x) = 0

where

LfV (x) = ⟨∇V (x), f(x)⟩ and LgV (x) = ⟨∇V (x), g(x)⟩

Then
for κ > 0 we can define the feedback law

k(x) =

 −
(
κ+

LfV (x)+
√

LfV (x)2+LgV (x)4

LgV (x)2

)
LgV (x), LgV (x) ̸= 0

0, LgV (x) = 0

The feedback law
asymptotically stabilizes the origin

inherits the regularity properties of
the CLF except at the origin

is continuous at the origin if the CLF
satisfies a small control property (i.e.,
|k(x)| → 0 for |x| → 0)

Note that: Formula known as
Universal formula

Sontag’s formula

(Derived by Eduardo Sontag)

C.M. Kellett & P. Braun Introduction to Nonlinear Control (Ch. 9) Control Lyapunov Functions 3 / 5



Sontag’s Universal Formula

Question:
If we know a CLF, how to define a feedback law?

Consider
a control affine system (u ∈ R)
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Backstepping

Question:
How to find a CLF?

Systems in strict feedback form:

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2, x3)

...
ẋn−1 = fn−1(x1, x2, . . . , xn−1, xn)

ẋn = fn(x1, x2, . . . , xn, u).

f3

∫
f2

∫
f1

∫
u ẋ3 ẋ2 ẋ1x3 x2 x1

Example:

ẋ = x3 + xξ, ξ̇ = u.

Backstepping idea:
Treat ξ as an input to define feedback law kξ(x)
stabilizing the x-dynamics and to find corresponding
CLF V1(x)

Define error variable z = ξ − kξ(x)

Derive error dynamics ż = d
dt
(ξ − kξ(x))

Stabilize error dynamics through feedback law k(x, z)
and define corresponding CLF V2(z)

The feedback law stabilizes the original
(x, ξ)-dynamics and a V1(x) + V2(z) is a
corresponding CLF.
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