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Control Lyapunov Functions

Recall the dynamical system consider:
z = f(z) with f(0)=0, z=CR"

Theorem (Asymptotic stability theorem)

Suppose there exists a continuously differentiable
function V' : R™ — R>q , 1,2 € Koo @and p € P
such that, for all x € R"™,

ar(lz]) < V(z) < aa(|z])
(VV (), f(z))< —p(|2])
Then the origin is (globally) asymptotically stable.
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Control Lyapunov Functions

Recall the dynamical system consider: Now consider dynamical system with input
z = f(z) with f(0)=0, z=CR" & = f(x,u)

@ Goal: Define u = k(z) asymptotically stabilizing the origin.

Theorem (Asymptotic stability theorem) Control Lyapunov function: V" : R™ — Rsq

Suppose there exists a continuously differentiable @ In terms of a feedback law u = k(z),

fi i : R™ R

e LV (@(t) = (VV(@), (@, k(@) <0, Va0
a1(lz]) < V(@) < az(|z|) ~~ V is a Lyapunov function for & = f(x, k(z)) = f(z)

(VV(), f(z))< —p(|z|)
Then the origin is (globally) asymptotically stable.

v
C.M. Kellett & P. Braun Introduction to Nonlinear Control (Ch. 9) Control Lyapunov Functions 2/5



Control Lyapunov Functions

Recall the dynamical system consider: Now consider dynamical system with input
z = f(z) with f(0)=0, z=CR" & = f(x,u)

. - @ Goal: Define u = k(z) asymptotically stabilizing the origin.
Theorem (Asymptotic stability theorem)

Control Lyapunov function: V : R™ — R>g
Suppose there exists a continuously differentiable @ In terms of a feedback law u = k(z),
suon it orai s € 28, 1 1 A0 ET V) = (V@) k) <0, Yoo
a1(lz]) < V(@) < az(|z|) ~~ V is a Lyapunov function for & = f(x, k(z)) = f(z)
(VV(z), f(@))< —p(|z]) @ For each x # 0 we can find v such that
Then the origin is (globally) asymptotically stable. | LV (x(t) = (VV(2), f(z,u)) <0



Control Lyapunov Functions

Recall the dynamical system consider:

i=f(z) with f(0)=0, xzCR"

Theorem (Asymptotic stability theorem)

Suppose there exists a continuously differentiable
function V' : R™ — R>q , 1,2 € Koo @and p € P
such that, for all x € R"™,

ar(lz]) < V(z) < aa(|z])
(VV(), f(z))< —p(|z|)
Then the origin is (globally) asymptotically stable.
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Now consider dynamical system with input
& = f(x,u)
@ Goal: Define u = k(z) asymptotically stabilizing the origin.
Control Lyapunov function: V : R™ — R>g
@ In terms of a feedback law u = k(x),

&V (1) = (VV(2), f(z, k(z))) <0,
~~ V is a Lyapunov function for & = f(x, k(z)) = f(z)
@ For each = # 0 we can find u such that
4V (2(t) = (VV(2), f(x,u)) < 0

Vo #0

Definition (Control Lyapunov function (CLF))

Let a1, a2 € K. A continuously differentiable function
V :R™ — R is called control Lyapunov function for & = f(x,u) if

a(lz]) S V(z) < aa(lz]), VazeR",
and for all z € R™\{0} there exists u € R™ such that
(VV (), f(z,u)) <O0.
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Sontag’s Universal Formula

Question:
@ If we know a CLF, how to define a feedback law?
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Sontag’s Universal Formula

Question:
@ If we know a CLF, how to define a feedback law?
Consider
@ a control affine system (u € R)
& = f(z) + g(z)u
with corresponding CLF V, i.e.,
(VV(z), f(z) + g(x)u)) <O Vo #0

C.M. Kellett & P. Braun Introduction to Nonlinear Control

(Ch. 9) Control Lyapunov Functions

3/5



Sontag’s Universal Formula

Question:

@ If we know a CLF, how to define a feedback law?
Consider

@ a control affine system (u € R)
z = f(z) + g(z)u
with corresponding CLF V, i.e.,
(VV(z), f(z) + g(@)u)) <0 Vo #0
Alternative representation of the decrease condition:
LyV(z) <0 ¥V z€R™\{0} suchthat LyV(z) =0
where

LyV(z) =(VV(2), f(z)) and  LgV(z) = (VV(z),g(z))
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Sontag’s Universal Formula

Question:
@ If we know a CLF, how to define a feedback law?
Consider
@ a control affine system (u € R)
&= f(z) +g(@)u
with corresponding CLF V, i.e.,
(VV(z), f(z) + g(x)u)) <O Vo #0
Alternative representation of the decrease condition:
LiV(z) <0 V z€R™\{0} suchthat LyV(z)=0
where
LyV(z)=(VV(2), f(z)) and LgV(z)=(VV(z),g(x))
Then
@ for x > 0 we can define the feedback law

{ B (n+ LfV<x>+\/LfV(m)QTLgvu)‘*) LgV(z), LgV(x)#0

k(z) = L,V (0)?

0, LyV(z) =0
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Consider
@ a control affine system (u € R)
&= f(z) +g(@)u
with corresponding CLF V, i.e.,
(VV(x), f(z) + g(z)u)) <O Vo #0
Alternative representation of the decrease condition:
LiV(z) <0 V z€R™\{0} suchthat LyV(z)=0
where
LyV(z) =(VV(z), f(z)) and  LgV(x)=(VV(z),g9(z))
Then
@ for x > 0 we can define the feedback law

{ _ (K+ LfV(ac)-h/LfV(ac)Q-FLgV(z)‘l) LyV(z), LyV(z)£0

k(z) = L,V (0)?

0, LyV(z) =0

The feedback law
@ asymptotically stabilizes the origin

@ inherits the regularity properties of
the CLF except at the origin

@ is continuous at the origin if the CLF
satisfies a small control property (i.e
|k(z)| — O for |z| — 0)
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Sontag’s Universal Formula

Question:
@ If we know a CLF, how to define a feedback law?
Consider
@ a control affine system (u € R)
&= f(z) +g(@)u
with corresponding CLF V, i.e.,
(VV(x), f(z) + g(z)u)) <O Vo #0
Alternative representation of the decrease condition:
LiV(z) <0 V z€R™\{0} suchthat LyV(z)=0
where
LyV(z) =(VV(z), f(z)) and  LgV(x)=(VV(z),g9(z))
Then
@ for x > 0 we can define the feedback law

{ _ (R+ LfV(ac)-h/LfV(ac)Q-FLgV(z)‘l) LyV(z), LyV(z)£0

k(z) = L,V (0)?

0, LyV(z) =0

The feedback law
@ asymptotically stabilizes the origin

@ inherits the regularity properties of
the CLF except at the origin

@ is continuous at the origin if the CLF
satisfies a small control property (i.e
|k(z)| — O for |z| — 0)

Note that: Formula known as
@ Universal formula

@ Sontag’s formula
(Derived by Eduardo Sontag)
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Backstepping

Question:
@ How to find a CLF?
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Backstepping

Question:
@ How to find a CLF?

Systems in strict feedback form: —

21 = fi(z1,22)

&g = fa(w1,w2,23)

Tn—1 = fn_1(®1,22,...,Tn—1,%n)
Tn = fn(z1,T2,...,Tn,u).
Example:

& = x> + x¢, Szu,

T3

z3 T2 z2 z1 z1
f3 — f2 > f1 >
(Ch. 9) Control Lyapunov Functions 4/5
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Backstepping

Question:
@ How to find a CLF?

2

X9 T1

1

Systems in strict feedback form: 2yl / gl o

Tn—1 = fn-1(x1,22, ..., Tn-1,%n)

Tn = fn(xly 2, ... 7mn7u)~
Example:
& = x> + x¢, 5 =u.
Backstepping idea:

@ Treat £ as an input to define feedback law k¢ (x)
stabilizing the z-dynamics and to find corresponding
CLF Vi (z)

@ Define error variable z = § — k¢ (x)
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Backstepping

Question:
@ How to find a CLF? . . .
Systems in strict feedback form: 2yl 7 EEENY / Y fo T2y ] / T2y f1 "1y / o
z1 = f1(z1,x2) ? A ? ?
&g = fa(w1,w2,23)
-1 = fa-1(21,22,.. ., Tn-1,%n)
Tn = fn(xlyx27 o 7171"“)'
Example:

: i ics 5= 4 (¢ —
&= 23 + zt, E=u @ Derive error dynamics z = 7 (§ — ke(z))

Backstepping idea:

@ Treat £ as an input to define feedback law k¢ (x)
stabilizing the z-dynamics and to find corresponding
CLF Vi (z)

@ Define error variable z = § — k¢ (x)

@ Stabilize error dynamics through feedback law k(z, z)
and define corresponding CLF V2(z)

@ The feedback law stabilizes the original
(z, &)-dynamics and a Vi (z) + Va(z) is a
corresponding CLF.
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