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1. Nonlinear Systems – Fundamentals (Dynamical Systems)

(Autonomous) First order differential equations:

ẋ(t) = d
dt
x(t) = f(x(t)), f : Rn → Rn (1)

A solution is an absolutely continuous function that
satisfies (1) for almost all t.

Non-autonomous/time-varying system:

ẋ(t) = f(t, x(t)), f : R≥0 × Rn → Rn

Systems with external inputs f : Rn × Rm → Rn:

ẋ = f(x, u), ẋ = f(x,w),

u : Rn → Rm, x 7→ u(x) ← degree of freedom

w : R→ Rm, t 7→ w(t) ← exogenous signal
(disturbance or reference)

Definition (Equilibrium, ẋ = 0)

The point xe ∈ Rn is called equilibrium of the system
ẋ = f(x) or ẋ = f(t, x), respectively, if

d
dt
x(t) = f(xe) = 0,

d
dt
x(t) = f(t, xe) = 0 ∀t ∈ R≥0.

The pair (xe, ue) ∈ Rn × Rm is called an equilibrium pair
of the system ẋ = f(x, u) if

d
dt
x(t) = f(xe, ue) = 0.

Without loss of generality xe = 0 (or (xe, ue) = 0).

Achieved through coordinate transf. z = x− xe, i.e.,

f̂(z)
.
= f(z + xe) yields ż = f̂(z)

where (ze = 0)

f̂(ze) = f(ze + xe) = f(xe) = 0
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1. Nonlinear Systems – Fundamentals (Comparison Functions)

Definition (Class-P,K,K∞,L,KL functions)

A continuous function ρ : R≥0 → R≥0 is said to be
positive definite (ρ ∈ P) if ρ(0) = 0 and
ρ(s) > 0 ∀ s ∈ R>0.

α ∈ P is said to be of class-K (α ∈ K) if α strictly
increasing.

α ∈ K is said to be of class-K∞ (α ∈ K∞) if
lim

s→∞
α(s) =∞.

A continuous function σ : R≥0 → R≥0 is said to be of
class-L (σ ∈ L) if σ is strictly decreasing and
lim

s→∞
σ(s) = 0.

A continuous function β : R2
≥0 → R≥0 is said to be of

class-KL (β ∈ KL) if for each fixed t ∈ R≥0,
β(·, t) ∈ K∞ and for each fixed s ∈ R>0, β(s, ·) ∈ L.

⇝ K∞ ⊂ K ⊂ P

Some properties:
Class-K∞ functions are invertible.

If α1, α2 ∈ K∞ then

α(s)
.
= α1 (α2(s)) = α1 ◦ α2(s) ∈ K∞.

If α ∈ K, σ ∈ L then α ◦ σ ∈ L.
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2. Nonlinear Systems – Stability Notions (Definitions)

Consider

ẋ = f(x), (with f(0) = 0)

Definition (Stability)

The origin is (Lyapunov) stable if, for any ε > 0 there exists
δ = δ(ε) > 0 such that if |x(0)| ≤ δ then, for all t ≥ 0,

|x(t)| ≤ ε.

Equivalent Definition:
The origin is stable if there exists α ∈ K and an open neigh-
borhood around the origin D ⊂ Rn, such that

|x(t)| ≤ α(|x(0)|), ∀ t ≥ 0, ∀ x0 ∈ D.

Definition (Instability)
The origin is unstable if it is not stable.

0

δε

x2

x1

x(0)
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2. Nonlinear Systems – Stability Notions (Definitions)

Consider ẋ = f(x) with f(0) = 0

Definition (Attractivity)

The origin is attractive if there exists δ > 0 such that if
|x(0)| < δ then

lim
t→∞

x(t) = 0.

Definition (Asymptotic stability)

The origin is asymptotically stable if it is both stable and
attractive.

Definition (KL-stability)

The system is said to be KL-stable if there exists δ > 0
and β ∈ KL such that if |x(0)| ≤ δ then for all t ≥ 0,

|x(t)| ≤ β(|x(0)|, t).

Proposition

The origin is asymptotically stable if and only if it is
KL-stable.

Definition (Exponential stability)

The origin is exponentially stable for ẋ = f(x) if there exist
δ, λ,M > 0 such that if |x(0)| ≤ δ then for all t ≥ 0,

|x(t)| ≤M |x(0)|e−λt. (2)

Example: The origin of
ẋ = x is unstable

ẋ = 0 is stable

ẋ = −x3 is asymptotically stable

ẋ = −x is exponentially stable
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2. Nonlinear Systems – Stability Notions (Lyapunov’s Second Method)
Consider ẋ = f(x) with f(0) = 0

Theorem (Lyapunov stability theorem)
Let V : Rn → R, cont. differentiable and α1, α2 ∈ K∞ such
that, for all x ∈ Rn,

α1(|x|) ≤ V (x) ≤ α2(|x|) and ⟨∇V (x), f(x)⟩≤ 0.

Then the origin is globally stable.

Theorem (Asymptotic stability theorem)
Let V : Rn → R, cont. differentiable, α1, α2 ∈ K∞, and
ρ ∈ P such that, for all x ∈ Rn,

α1(|x|) ≤ V (x) ≤ α2(|x|) and ⟨∇V (x), f(x)⟩≤ −ρ(|x|).

Then the origin is globally asymptotically stable.

Theorem (Exponential stability theorem)
Let V : Rn → R, cont. differentiable, constants λ1, λ2, c > 0
and p ≥ 1 such that, for all x ∈ Rn

λ1|x|p ≤ V (x) ≤ λ2|x|p and ⟨∇V (x), f(x)⟩≤ −cV (x).

Then the origin is globally exponentially stable.

Theorem (Partial Convergence)
Let V : Rn → R, cont. differentiable, α1, α2 ∈ K∞, and
W : Rn → R≥0

such that, for all x ∈ Rn,

α1(|x|) ≤ V (x) ≤ α2(|x|) and ⟨∇V (x), f(x)⟩≤ −W (x).

Then limt→∞W (x(t)) = 0.

Theorem (Lyapunov theorem for instability)
Let V : Rn → R≥0 cont. differentiable and ε > 0 such that

⟨∇V (x), f(x)⟩> 0 ∀x ∈ Bε\{0}

Then the origin is (completely) unstable.

Theorem (Chetaev’s theorem)
Let V : Rn → R be cont. differentiable with V (0) = 0 and
Or = {x ∈ Br(0)| V (x) > 0} ̸= ∅ for all r > 0. If for
certain r > 0,

⟨∇V (x), f(x)⟩> 0, ∀ x ∈ Or

then the origin is unstable.
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Consider ẋ = f(x) with f(0) = 0

Theorem (Lyapunov stability theorem)
Let V : Rn → R, cont. differentiable and α1, α2 ∈ K∞ such
that, for all x ∈ Rn,

α1(|x|) ≤ V (x) ≤ α2(|x|) and ⟨∇V (x), f(x)⟩≤ 0.

Then the origin is globally stable.

Theorem (Asymptotic stability theorem)
Let V : Rn → R, cont. differentiable, α1, α2 ∈ K∞, and
ρ ∈ P such that, for all x ∈ Rn,

α1(|x|) ≤ V (x) ≤ α2(|x|) and ⟨∇V (x), f(x)⟩≤ −ρ(|x|).

Then the origin is globally asymptotically stable.

Theorem (Exponential stability theorem)
Let V : Rn → R, cont. differentiable, constants λ1, λ2, c > 0
and p ≥ 1 such that, for all x ∈ Rn

λ1|x|p ≤ V (x) ≤ λ2|x|p and ⟨∇V (x), f(x)⟩≤ −cV (x).

Then the origin is globally exponentially stable.

Theorem (Partial Convergence)
Let V : Rn → R, cont. differentiable, α1, α2 ∈ K∞, and
W : Rn → R≥0

such that, for all x ∈ Rn,

α1(|x|) ≤ V (x) ≤ α2(|x|) and ⟨∇V (x), f(x)⟩≤ −W (x).

Then limt→∞W (x(t)) = 0.

Theorem (Lyapunov theorem for instability)
Let V : Rn → R≥0 cont. differentiable and ε > 0 such that

⟨∇V (x), f(x)⟩> 0 ∀x ∈ Bε\{0}

Then the origin is (completely) unstable.

Theorem (Chetaev’s theorem)
Let V : Rn → R be cont. differentiable with V (0) = 0 and
Or = {x ∈ Br(0)| V (x) > 0} ̸= ∅ for all r > 0. If for
certain r > 0,

⟨∇V (x), f(x)⟩> 0, ∀ x ∈ Or

then the origin is unstable.

P. Braun (ANU) A Run Through Nonlinear Control Topics 6 / 37



2. Nonlinear Systems – Stability Notions (Lypunov’s Second Method)

Intuition:
Lyapunov functions represent energy associated with
the state of a system

If energy is (strictly) decreasing, then an equilibrium is
(symptotically) stable

V̇ (x(t)) = ⟨∇V (x), f(x)⟩ < 0 ∀x ̸= 0

Extensions:
(LaSalle’s) Invariance principles

Similar results for time-varying systems

Converse Lyapunov results (i.e., asymptotic stability
implies existence of Lyapunov function)

P. Braun (ANU) A Run Through Nonlinear Control Topics 7 / 37


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}






var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}






3. Linear Systems (Stability)

Linear Systems:

ẋ = Ax, A ∈ Rn×n

Theorem
For the linear system ẋ = Ax, the following are equivalent:

1 The origin is asymptotically/exponentially stable;
2 All eigenvalues of A have strictly negative real parts;
3 For every Q > 0, there exists a unique P > 0,

satisfying the Lyapunov equation

ATP + PA = −Q.

Lyapunov Function:

V (x) = xTPx

It holds that:

V̇ (x(t)) = d
dt

(
xTPx

)
= ẋTPx+ xTP ẋ

= xTATPx+ xTPAx = −xTQx

Consider:

ẋ = f(x), f(0) = 0, f cont. differentiable

Define (Jacobian evaluated at the origin):

A =

[
∂f(x)

∂x

]
x=0

Linearization of ẋ = f(x) at x = 0:

ż(t) = Az(t)

Theorem
Consider ẋ = f(x) (f cont. differentiable) and its
linearization ż = Az. If the origin ze = 0 of ż = Az is
globally exponentially stable then the origin xe = 0 of
ẋ = f(x) is locally exponentially stable.

Semidefinite programming:

εI ≤ P
ATP + PA ≤ −εI ⇔ ε|x|2 ≤ V (x)

⟨∇V (x), Ax⟩ ≤ −ε|x|2

⇝ Construction can be extended to systems with
polynomial right-hand side
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ẋ = f(x) is locally exponentially stable.

Semidefinite programming:

εI ≤ P
ATP + PA ≤ −εI ⇔ ε|x|2 ≤ V (x)

⟨∇V (x), Ax⟩ ≤ −ε|x|2

⇝ Construction can be extended to systems with
polynomial right-hand side

P. Braun (ANU) A Run Through Nonlinear Control Topics 8 / 37



5. Discrete Time Systems (Fundamentals)

Discrete time systems:

xd(k + 1) = F (xd(k), ud(k)), xd(0) = xd,0 ∈ Rn

yd(k) = H(xd(k), ud(k))

Time-varying discrete time system (k ≥ k0 ≥ 0):

xd(k + 1) = F (k, xd(k)), xd(k0) = xd,0 ∈ Rn

Time invariant discrete time systems without input:

xd(k + 1) = F (xd(k)), xd(0) = xd,0 ∈ Rn,

Shorthand notation for difference equations:

x+d = F (xd, ud),

Definition (Equilibrium)

The point xed ∈ Rn is called equilibrium if xed = F (xed)
or xed = F (k, xed) for all k ∈ N is satisfied.

The pair (xed, u
e
d) ∈ Rn × Rm is called equilibrium

pair of the system if xed = F (xed, u
e
d) holds.

Again, without loss of generality we can shift the equilibrium
(pair) to the origin.

Definition (Equilibrium, ẋ = 0)

The point xe ∈ Rn is called an equilibrium of the system
ẋ = f(x) if d

dt
x(t) = f(xe) = 0
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5. Discrete Time Systems (Stability)
Discrete time systems: Consider

x+ = F (x), x(0) = x0 ∈ Rn

Definition (KL-stability)
The origin of the discrete time system is is globally
asymptotically stable, or alternatively KL-stable, if there
exists β ∈ KL such that

|x(k)| ≤ β(|x(0)|, k), ∀ k ∈ N,

is satisfied for all x(0) ∈ Rn.

Theorem (Lyapunov stability theorem)
Suppose there exists a continuous function V : Rn → R≥0

and functions α1, α2 ∈ K∞ such that, for all x ∈ Rn,

α1(|x|) ≤ V (x) ≤ α2(|x|)
V (F (x))− V (x) ≤ 0

Then the origin is stable.

Continuous time systems: Consider

ẋ = f(x), x(0) = x0 ∈ Rn

Definition (KL-stability)
The origin of the continuous time system is globally
asymptotically stable, or alternatively KL-stable, if there
exists β ∈ KL such that

|x(t)| ≤ β(|x(0)|, t), ∀ t ∈ R≥0,

is satisfied for all x(0) ∈ Rn.

Theorem (Lyapunov stability theorem)
Suppose there exists a smooth function V : Rn → R≥0

and functions α1, α2 ∈ K∞ such that, for all x ∈ Rn,

α1(|x|) ≤ V (x) ≤ α2(|x|)
⟨∇V (x), f(x)⟩ ≤ 0

Then the origin is stable.
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5. Discrete Time Systems (Linear systems)

Consider the discrete time linear system

x+ = Ax, x(0) ∈ Rn [Solution x(k) = Akx(0)]

Theorem
The following properties are equivalent:

1 The origin xe = 0 is exponentially stable;
2 The eigenvalues λ1, . . . , λn ∈ C of A satisfy |λi| < 1

for all i = 1, . . . , n; and
3 For Q > 0 there exists a unique P > 0 satisfying the

discrete time Lyapunov equation

ATPA− P = −Q.

A matrix A which satisfies |λi| < 1 for all i = 1, . . . , n is
called a Schur matrix.

Consider the continuous time linear system

ẋ = Ax, x(0) ∈ Rn [Solution x(t) = eAtx(0)]

Theorem
The following properties are equivalent:

1 The origin xe = 0 is exponentially stable;
2 The eigenvalues λ1, . . . , λn ∈ C of A satisfy λi ∈ C−

for all i = 1, . . . , n; and
3 For Q > 0 there exists a unique P > 0 satisfying the

continuous time Lyapunov equation

ATP + PA = −Q.

A matrix A which satisfies λi ∈ C− for all i = 1, . . . , n is
called a Hurwitz matrix.
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5. Discrete Time Systems (Sampling)

Derivative for continuously differentiable function:

d
dt
x(t) = lim

∆→0

x(t+∆)− x(t)
∆

Difference quotient (for ∆ > 0 small):

x(t+∆)− x(t)
∆

≈ d
dt
x(t) = ẋ(t) = f(x(t), u(t))

or equivalently

x(t+∆) ≈ x(t) + ∆f(x(t), u(t))

Approximated discrete time system (identify t with k ·∆)

x+d = F (xd, ud)
.
= xd +∆f(xd, ud)

⇝ This discretization is known as (explicit) Euler method.

Approximation of ẋ = 1.1x

Euler discretization: x+ = (1 +∆1.1)x

0 1 2 3

0

0.5

1

1.5

2

2.5
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5. Discrete Time Systems (Runge-Kutta Methods)

Consider

ẋ = g(t, x).

Runge-Kutta update formula:

x(t+∆) = x(t) + ∆
s∑

i=1

biki
where

k1 = g(t, x(t))

k2 = g(t+ c2∆, x+∆(a21k1))

k3 = g(t+ c3∆, x+∆(a31k1 + a32k2))

...
ks = g(t+ cs∆, x+∆(as1k1 + as2k2 + · · ·+ as(s−1)k(s)))

s ∈ N (stage); aij , bℓ, ci ∈ R, 1 ≤ j < i ≤ s, 1 ≤ ℓ ≤ s
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0
c2 a21
c3 a31 a32
...

...
. . .

cs as1 as2 · · · as(s−1)

b1 b2 · · · bs−1 bs

⇝ ci is only necessary for time-varying systems

Examples: The Euler and the Heun method

0
1

and
0
1 1

1
2

1
2

Heun Method: Update of x in three steps

k1 = f(x(t), ud),

k2 = f(x(t) + ∆k1, ud),

x(t+∆) = x(t) + ∆
(
1
2
k1 + 1

2
k2
)
.
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5. Discrete Time Systems (Runge-Kutta Methods)
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5. Discrete Time Systems (Runge-Kutta Methods in Matlab)

The function ode23.m relies on the Butcher tableaus

0
1
2

1
2

3
4

0 3
4

2
9

1
3

4
9

and

0
1
2

1
2

3
4

0 3
4

1 2
9

1
3

4
9

7
24

1
4

1
3

1
8

One scheme is used to approximate x(t+∆).

The second scheme is needed to approximate the
error, to select the step size ∆.

The function ode45.m relies on the Butcher tableaus

0
1
5

1
5

3
10

3
40

9
40

4
5

44
45

− 56
15

32
9

8
9

19372
6561

− 25360
2187

64448
6561

− 212
729

1 9017
3168

− 355
33

46732
5247

49
176

− 5103
18656

1 35
384

0 500
1113

125
192

− 2187
6784

11
84

35
384

0 500
1113

125
192

− 2187
6784

11
84

0

5179
57600

0 7571
16695

393
640

− 92097
339200

187
2100

1
40
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7. Input-to-State stability (Definition & Motivation)
Input-to-state stability (ISS) for nonlinear systems:

ẋ = f(x,w), x(0) = x0 ∈ Rn

w ∈ W = {w : R≥0 → Rm| w essentially bounded}.

Definition (Input-to-state stability)
The system is said to be input-to-state stable (ISS) if there
exist β ∈ KL and γ ∈ K such that solutions satisfy

|x(t)| ≤ β(|x(0)|, t) + γ (∥w∥L∞ )

for all x ∈ Rn, w ∈ W, and t ≥ 0.

• γ ∈ K: ISS-gain; • β ∈ KL: transient bound.

0 5 10

0

0.5

1

1.5

2

2.5

3

Example
Consider the nonlinear/bilinear system:

ẋ = −x+ xw.

The system is 0-input globally asymptotically stable
(since w = 0 implies ẋ = −x and so x(t) = x(0)e−t)

However, consider the bounded input/disturbance
w = 2. Then ẋ = x and so x(t) = x(0)et.

Consequently, it is impossible to find β ∈ KL and
γ ∈ K such that

|x(t)| = |x(0)|et ≤ β(|x(0)|, t) + γ(2).
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(since w = 0 implies ẋ = −x and so x(t) = x(0)e−t)

However, consider the bounded input/disturbance
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7. Input-to-State Stability (Lyapunov Characterizations)

Definition (Input-to-state stability)
ẋ = f(x,w) is said to be input-to-state stable (ISS) if there
exist β ∈ KL and γ ∈ K such that solutions satisfy

|x(t)| ≤ β(|x(0)|, t) + γ (∥w∥L∞ )

for all x ∈ Rn, w ∈ W, and t ≥ 0.

Theorem (ISS-Lyapunov function)
ẋ = f(x,w) is ISS if and only if there exist a cont.
differentiable fcn. V : Rn → R≥0 and α1, α2, α3, σ ∈ K∞
such that for all x ∈ Rn and all w ∈ Rm

α1(|x|) ≤ V (x) ≤ α2(|x|)
⟨∇V (x), f(x,w)⟩ ≤ −α3(|x|) + σ(|w|)

Example

Consider

ẋ = f(x,w) = −x− x3 + xw, x(0) = x0 ∈ R

The candidate ISS-Lyapunov function V (x) = 1
2
x2:

⟨∇V (x), f(x,w)⟩ = ⟨x,−x− x3 + xw⟩

= −x2 − x4 + x2w

≤ −x2 − x4 + 1
2
x4 + 1

2
w2

= −x2 − 1
2
x4 + 1

2
w2

The inequality follows from Young’s inequality:

yz ≤
1

2
y2 +

1

2
z2

Define α(s) .= s2 + 1
2
s4 and σ(s) .= 1

2
s2, Then

V̇ (x) ≤ −α(|x|) + σ(|w|)

i.e., V is an ISS-Lyapunov function, the system is ISS.
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7. Input-to-State Stability (Cascade Interconnections)

ẋ1 = f1(x1, w1) ẋ2 = f2(x2, w2)
w1 w2 = x1 x2

[
ẋ1
ẋ2

]
=

[
f1(x1, w1)
f2(x2, x1)

]

Theorem (ISS Cascade)

Consider the system with [x1, x2]T ∈ Rn, w2 = x1. If each
of the subsystems are ISS, then the cascade
interconnection is ISS with w1 as input and x as state.
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8. LMI Based Controller and Antiwindup Designs

P

C

sat(u)

z

y

w

Plant & Controller:

P :

 ẋp = Apxp +Bp sat(u) +Bww
y = Cp,yxp +Dp,yw
z = Cp,zxp +Dp,zw

C :

{
ẋc = Acxc +Bcy
u = Ccxc +Dc,yy

Compact representation: (x = [xTp , x
T
c ]T ∈ Rn) A B E

C D F
K L G

 =

 Ap +BpDc,yCp,y BpCc −Bp BpDc,yDp,y +Bw

BcCp,y Ac 0 BcDp,y

Cp,z 0 0 Dp,z

Dc,yCp,y Cc 0 Dc,yDp,y

 ẋ = Ax+Bq + Ew
z = Cx+Dq + Fw
u = Kx+ Lq +Gw
q = u− sat(u)
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8. LMI Based Controller and Antiwindup Designs (Linear Controller Design)

Consider:

ẋ = Ax+Bu

u = Kx

Goal: Find stabilizing controller, i.e., find K and P > 0:

V (x(t)) = x(t)TPx(t) > 0, V̇ (x(t)) < 0 ∀x(t) ̸= 0

In terms of definite matrices:

P > 0, (A+BK)TP + P (A+BK) < 0,

P > 0, ATP +KTBTP + PA+ PBK < 0

Define Λ = P−1, Φ = KΛ:

Λ > 0, ΛAT + ΛKTBT +AΛ +BKΛ < 0,

Λ > 0, ΛAT +ΦTBT +AΛ +BΦ < 0,

LMI (as convex optimization problem):

min
Λ, Φ

f(Λ,Φ)

subject to 0 < Φ

0 > ΛAT +ΦTBT +AΛ +BΦ

Lemma (Schur Complement)
Let Q ∈ Rn×n and R ∈ Rq×q , symmetric, and let
S ∈ Rr×q . Then[

Q S
ST R

]
< 0 ⇔ R < 0

Q− SR−1ST < 0

Lemma (S-Lemma or S-Procedure)
Let M0,M1 ∈ Rr×r , symmetric, and suppose there exists
ζ∗ ∈ Rr such that (ζ∗)TM1ζ∗ > 0. Then the following
statements are equivalent:

1 There exists τ > 0 such that M0 − τM1 > 0.
2 For all ζ ̸= 0 such that ζTM1ζ ≥ 0 it holds that
ζTM0ζ > 0.

If (1) is satisfied, then (2) is satisfied

For known τ , (1) is an LMI which can be used to verify
(2).
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ẋ = Ax+Bu

u = Kx

Goal: Find stabilizing controller, i.e., find K and P > 0:

V (x(t)) = x(t)TPx(t) > 0, V̇ (x(t)) < 0 ∀x(t) ̸= 0

In terms of definite matrices:

P > 0, (A+BK)TP + P (A+BK) < 0,

P > 0, ATP +KTBTP + PA+ PBK < 0

Define Λ = P−1, Φ = KΛ:

Λ > 0, ΛAT + ΛKTBT +AΛ +BKΛ < 0,

Λ > 0, ΛAT +ΦTBT +AΛ +BΦ < 0,

LMI (as convex optimization problem):

min
Λ, Φ

f(Λ,Φ)

subject to 0 < Φ

0 > ΛAT +ΦTBT +AΛ +BΦ

Lemma (Schur Complement)
Let Q ∈ Rn×n and R ∈ Rq×q , symmetric, and let
S ∈ Rr×q . Then[

Q S
ST R

]
< 0 ⇔ R < 0

Q− SR−1ST < 0

Lemma (S-Lemma or S-Procedure)
Let M0,M1 ∈ Rr×r , symmetric, and suppose there exists
ζ∗ ∈ Rr such that (ζ∗)TM1ζ∗ > 0. Then the following
statements are equivalent:

1 There exists τ > 0 such that M0 − τM1 > 0.
2 For all ζ ̸= 0 such that ζTM1ζ ≥ 0 it holds that
ζTM0ζ > 0.

If (1) is satisfied, then (2) is satisfied

For known τ , (1) is an LMI which can be used to verify
(2).

P. Braun (ANU) A Run Through Nonlinear Control Topics 19 / 37



9. Control Lyapunov Functions

Consider the nonlinear system

ẋ = f(x, u)

f : Rn × Rm → Rn

state x and control input u

Goal: Define a feedback control law u = k(x) which
asymptotically stabilizes the origin.

Control Lyapunov function: V : Rn → R≥0

In terms of a feedback law u = k(x),
d
dt
V (x(t)) = ⟨∇V (x), f(x, k(x))⟩ < 0, ∀ x ̸= 0

⇝ V is a Lyapunov function for ẋ = f(x, k(x)) = f̃(x)

For each x ̸= 0 we can find u such that
d
dt
V (x(t)) = ⟨∇V (x), f(x, u)⟩ < 0

Definition (Control Lyapunov function (CLF))
Consider the nonlinear system and α1, α2 ∈ K∞. A
continuously differentiable function V : Rn → R≥0 is called
control Lyapunov function if

α1(|x|) ≤ V (x) ≤ α2(|x|), ∀ x ∈ Rn,

and for all x ∈ Rn\{0} there exists u ∈ Rm such that

⟨∇V (x), f(x, u)⟩ < 0.
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9. Control Lyapunov Functions (Control Affine Systems)

Control affine systems

ẋ = f(x) + g(x)u

Assumptions:
for simplicity we focus on u ∈ R
f, g : Rn → Rn (locally Lipschitz)

f(0) = 0 without loss of generality
Lie derivative notation

LfV (x) = ⟨∇V (x), f(x)⟩

The decrease condition:

V̇ (x) = ⟨∇V (x), f(x) + g(x)u⟩
= LfV (x) + LgV (x)u < 0, ∀ x ̸= 0.

Definition (Control Lyapunov function (CLF))
Consider the nonlinear system ẋ = f(x, u) and
α1, α2 ∈ K∞. A continuously differentiable function
V : Rn → R≥0 is called control Lyapunov function if

α1(|x|) ≤ V (x) ≤ α2(|x|), ∀ x ∈ Rn,

and for all x ∈ Rn\{0} there exists u ∈ Rm such that

⟨∇V (x), f(x, u)⟩ < 0.

The decrease condition for control affine systems:

LfV (x) < 0 ∀ x ∈ Rn\{0} such that LgV (x) = 0

In other words
If LgV (x) = 0 (i.e., we have no control authority)

then LfV (x) < 0 needs to be satisfied
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9. Control Lyapunov Functions (Sontag’s Universal Formula)

Consider a control affine system (u ∈ R)

ẋ = f(x) + g(x)u

with corresponding CLF V , i.e.,

LfV (x) < 0 ∀ x ∈ Rn\{0} such that LgV (x) = 0

Then, for κ > 0 define the feedback law

k(x) =

 −
(
κ+

LfV (x)+
√

LfV (x)2+LgV (x)4

LgV (x)2

)
LgV (x), LgV (x) ̸= 0

0, LgV (x) = 0

The feedback law
asymptotically stabilizes the origin

inherits the regularity properties of
the CLF except at the origin

is continuous at the origin if the CLF
satisfies a small control property (i.e.,
|k(x)| → 0 for |x| → 0)

Sketch of the proof: For κ = 0 it holds that

V̇ (x) = LfV (x) + LgV (x)k(x)

= LfV (x)− LgV (x)

(
LfV (x) +

√
LfV (x)2 + LgV (x)4

LgV (x)2

)
LgV (x)

= LfV (x)− LfV (x)−
√
LfV (x)2 + LgV (x)4 = −

√
LfV (x)2 + LgV (x)4.

• κ > 0 adds a term −κ(LgV (x))2 (which guarantees certain ISS properties)

Note that: Formula known as
Universal formula

Sontag’s formula
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9. Control Lyapunov Functions (Backstepping)

Systems in strict feedback form:

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2, x3)

...
ẋn−1 = fn−1(x1, x2, . . . , xn−1, xn)

ẋn = fn(x1, x2, . . . , xn, u).

f3

∫
f2

∫
f1

∫
u ẋ3 ẋ2 ẋ1x3 x2 x1
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10. Sliding Mode Control (Finite-Time Stability)

Consider

ẋ = f(x), x(0) = x0 ∈ Rn, (f(0) = 0)

Definition (Finite-time stability)

The origin is said to be (globally) finite-time stable if there
exists a function T : Rn\{0} → (0,∞), called the
settling-time function, such that the following statements
hold:

(Stability) For every ε > 0 there exists a δ > 0 such
that, for every x(0) = x0 ∈ Bδ\{0}, x(t) ∈ Bε for all
t ∈ [0, T (x0)).

(Finite-time convergence) For every
x(0) = x0 ∈ Rn\{0}, x(·) is defined on [0, T (x0)),
x(t) ∈ Rn\{0} for all t ∈ [0, T (x0)), and x(t)→ 0 for
t→ T (x0).

Example

Consider

ẋ = f(x) = − 3
√
x2, (with f(0) = 0)

Note that
f is not Lipschitz at the origin

uniqueness of solutions can only be guaranteed if
x(t) ̸= 0

We can verify that

x(t) = − 1
27

(t− 3 sign(x(0)) 3
√
|x(0)|)3

is a solution for all x ∈ R.
However, for x(0) > 0

x(t) =

{
− 1

27
(t− 3 3

√
|x(0)|)3 if t ≤ 3 3

√
|x(0)|

0 if t ≥ 3 3
√
|x(0)|

is also a solution.
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10. Sliding Mode Control (Finite-Time Stability)

Example

Consider

ẋ = f(x) = − sign(x)
3
√
x2.

We can verify

x(t) =

{
− 1

27
sign(x(0))(t− 3 3

√
|x(0)|)3 if t ≤ 3 3

√
|x(0)|

0 if t ≥ 3 3
√
|x(0)|

⇝ The ODE admits unique solutions
Once the equilibrium is reached, the inequalities

− sign(x)
3
√
x2 < 0 for all x > 0, and

− sign(x)
3
√
x2 > 0 for all x < 0

ensure that the origin is attractive.
It follows from the explicit solution that

The origin is finite-time stable

Settling time T (x) = 3 3
√
|x|
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10. Sliding Mode Control (Finite-Time Stability)

Theorem (Lyapunov fcn for finite-time stability)

Consider ẋ = f(x) with f(0) = 0. Assume there exist a
continuous function V : Rn → R≥0, which is continuously
differentiable on Rn\{0}, α1, α2 ∈ K∞ and a constant
κ > 0 such that

α1(|x|) ≤ V (x) ≤ α2(|x|),

V̇ (x) = ⟨∇V (x), f(x)⟩ ≤ −κ
√
V (x) ∀x ̸= 0.

Then the origin is globally finite-time stable.
Moreover, the settling-time T (x) : Rn → R≥0 is upper
bounded by

T (x) ≤ 2
κ

√
α2(|x|).
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10. Sliding Mode Control (Example)

As an example, consider:

ẋ = x3 + z,

ż = u+ δ(t, x, z).

Unknown disturbance δ : R≥0 × R2 → R
Assumption: there exists Lδ ∈ R>0 such that

|δ(t, x, z)| ≤ Lδ (t, x, z) ∈ R≥0 × R2

Thus, δ is bounded but not necessarily continuous

Goal: Exponential stability of the x-subsystem
I.e., we want x to behave as ẋ = −x (for all bounded
disturbances)

The desired behavior implies ẋ+ x = 0

Thus

x3 + z + x = 0

Approach: Define a new state

σ
.
= x3 + z + x and V (σ) = 1

2
σ2

Then

V̇ (σ) = σσ̇ = σ
(
3x2ẋ+ ż + ẋ

)
= σ

(
3x5 + 3x2z + u+ δ(t, x, z) + x3 + z

)
.

To cancel the known terms define

u = v − 3x5 − 3x2z − x3 − z

so that V̇ (σ) = σ (v + δ(t, x, z)) (with new input v)

Selecting v = −ρ sign(σ), ρ > 0, provides the estimate

V̇ (σ) = σ (−ρ sign(σ) + δ(t, x, z)) = −ρ|σ|+ σδ(t, x, z)

≤ −ρ|σ|+ Lδ|σ| = −(ρ− Lδ)|σ|.

Finally, with ρ = Lδ + κ√
2

, κ > 0, we have

V̇ (σ) ≤ −
κ|σ|
√
2

= −α
√
V (σ)⇝ finite-time stab. of σ = 0

Note that the control

u = −
(
Lδ + κ√

2

)
sign

(
x3+z+x

)
−3x5−3x2z−x3−z

is independent of the term δ(t, x, z).
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)
= σ

(
3x5 + 3x2z + u+ δ(t, x, z) + x3 + z

)
.

To cancel the known terms define

u = v − 3x5 − 3x2z − x3 − z

so that V̇ (σ) = σ (v + δ(t, x, z)) (with new input v)

Selecting v = −ρ sign(σ), ρ > 0, provides the estimate

V̇ (σ) = σ (−ρ sign(σ) + δ(t, x, z)) = −ρ|σ|+ σδ(t, x, z)

≤ −ρ|σ|+ Lδ|σ| = −(ρ− Lδ)|σ|.

Finally, with ρ = Lδ + κ√
2

, κ > 0, we have

V̇ (σ) ≤ −
κ|σ|
√
2

= −α
√
V (σ)⇝ finite-time stab. of σ = 0

Note that the control

u = −
(
Lδ + κ√

2

)
sign

(
x3+z+x

)
−3x5−3x2z−x3−z

is independent of the term δ(t, x, z).

P. Braun (ANU) A Run Through Nonlinear Control Topics 28 / 37



10. Sliding Mode Control (Example)

As an example, consider:
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10. Sliding Mode Control (Example)

Consider:

ẋ = x3 + z,

ż = u+ δ(t, x, z).

Control law:

u = −
(
Lδ + κ√

2

)
sign

(
x3+z+x

)
−3x5−3x2z−x3−z

Parameter selection for the simulations:
Lδ = 1 and κ = 2

δ(t, x, z) = sin(t) (top)

δ(t, x, z) = sign(cos(2t) sin(2t)) (bottom)
We observe that

σ converges to zero in finite-time

Afterwards (x, z) asymptotically approach the origin

Since the ordinary differential equation is solved
numerically, σ is not exactly zero!

0 1 2 3 4 5

-2

0

2

4

0 1 2 3 4 5

-10

0

10

0 1 2 3 4 5

-2

0

2

4

0 1 2 3 4 5

-10

0

10

P. Braun (ANU) A Run Through Nonlinear Control Topics 29 / 37



10. Sliding Mode Control (Example)

Consider:
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11. Adaptive Control (Motivations and Examples)

Consider parameter-dependent systems:

ẋ = f(x, u, θ), (θ ∈ Rq constant but unknown)

Goal: Stabilization of the origin.

Simple motivating example:

ẋ = θx+ u

Linear controller: For u = −kx it holds that

ẋ = −(k − θ)x

i.e., asymptotic stability for (k − θ) > 0 and instability
for (k − θ) < 0.

What if a bound on |θ| is not known?

Nonlinear controller: u = −k1x− k2x3, k1, k2 ∈ R>0,

ẋ = (θ − k1)x− k2x3 =
[
(θ − k1)− k2x2

]
x. (3)

▶ For θ ≤ k1, (3) exhibits a unique equilibrium
xe = 0 in R

▶ For θ > k1, (3) exhibits three equilibria

xe ∈ {0,±
√

θ−k1
k2
}

⇝ It can be shown that

x(t)→ Sθ =
{
x ∈ R

∣∣∣ |x| ≤√ 1
k1
|θ|
}

Dynamic controller: u = −k1x− ξx, ξ̇ = x2[
ẋ

ξ̇

]
=

[
θx− k1x− ξx

x2

]
,

In terms of error dynamics: θ̂ = ξ − θ[
ẋ
˙̂
θ

]
=

[
−θ̂x− k1x

x2

]
,

Lyapunov function V (x, θ̂) = 1
2
x2 + 1

2
θ̂2;

V̇ (x, θ̂) = (−(ξ − θ)x− k1x)x+ (ξ − θ)x2 = −k1x2

⇝ x(t)→ 0 for t→∞ ∀ x(0) ∈ R, ξ(0) ∈ R
(LaSalle-Yoshizawa theorem)

ξ(t)→ θ for t→∞ is not guaranteed
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ẋ = f(x, u, θ), (θ ∈ Rq constant but unknown)

Goal: Stabilization of the origin.
Simple motivating example:

ẋ = θx+ u

Linear controller: For u = −kx it holds that

ẋ = −(k − θ)x

i.e., asymptotic stability for (k − θ) > 0 and instability
for (k − θ) < 0.

What if a bound on |θ| is not known?

Nonlinear controller: u = −k1x− k2x3, k1, k2 ∈ R>0,

ẋ = (θ − k1)x− k2x3 =
[
(θ − k1)− k2x2

]
x. (3)

▶ For θ ≤ k1, (3) exhibits a unique equilibrium
xe = 0 in R

▶ For θ > k1, (3) exhibits three equilibria

xe ∈ {0,±
√

θ−k1
k2
}

⇝ It can be shown that

x(t)→ Sθ =
{
x ∈ R

∣∣∣ |x| ≤√ 1
k1
|θ|
}

Dynamic controller: u = −k1x− ξx, ξ̇ = x2[
ẋ

ξ̇

]
=

[
θx− k1x− ξx

x2

]
,

In terms of error dynamics: θ̂ = ξ − θ[
ẋ
˙̂
θ

]
=

[
−θ̂x− k1x

x2

]
,

Lyapunov function V (x, θ̂) = 1
2
x2 + 1

2
θ̂2;

V̇ (x, θ̂) = (−(ξ − θ)x− k1x)x+ (ξ − θ)x2 = −k1x2
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11. Adaptive Control (Model Reference Adaptive Control)

Consider linear systems

ẋ = Ax+Bu

with unknown matrices A, B.

Goal: Design a controller so that the unknown system
behaves like

˙̄x = Āx̄+ B̄ue

where Ā ∈ Rn×n and B̄ ∈ Rn×m are design
parameters and ue ∈ Rm is a constant reference.

For Ā Hurwitz, ue defines the asymptotically stable
equilibrium

x̄e = −Ā−1B̄ue

Control law:

u =M(θ)ue + L(θ)x,

parameter dependent matrices M(·), L(·), to be
designed

Closed-loop dynamics:

ẋ = Ax+B(M(θ)ue + L(θ)x)

= (A+BL(θ))x+BM(θ)ue

= Acl(θ)x+Bcl(θ)u
e

where

Acl(θ) = A+BL(θ), Bcl(θ) = BM(θ)

Compatibility conditions

Acl(θ) = Ā ⇐⇒ BL(θ) = Ā−A,
Bcl(θ) = B̄ ⇐⇒ BM(θ) = B̄.

Overall system dynamics ẋ
˙̄x

θ̇

 =

 (A+BL(θ))x+BM(θ)ue

Āx̄+ B̄ue

Ψ(x, x̄, ue)


for Ψ defined appropriately
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˙̄x = Āx̄+ B̄ue
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11. Adaptive Control (Adaptive Backstepping)

Systems in parametric strict-feedback form:

ẋ1 = x2 + ϕ1(x1)
T θ

ẋ2 = x3 + ϕ2(x1, x2)
T θ

...

ẋn−1 = xn + ϕn−1(x1, . . . , xn−1)
T θ

ẋn = β(x)u+ ϕn(x)
T θ

where β(x) ̸= 0 for all x ∈ Rn

Theorem
Let ci > 0 for i ∈ {1, . . . , n}. Consider the adaptive controller

u = 1
β(x)

αn(x, ϑ1, . . . , ϑn)

ϑ̇i = Γ
(
ϕi(x1, . . . , xi)−

∑i−1
j=1

∂αi−1

∂xj
ϕj(x1, . . . xj)

)
zi, i = 1, . . . , n,

where ϑi ∈ Rq are multiple estimates of θ, Γ > 0 is the adaptation gain
matrix, and the variables zi and the stabilizing functions

αi = αi(x1, . . . , xi, ϑ1, . . . , ϑi), αi : Ri+i·q → R, i = 1, . . . , n,

are defined by the following recursive expressions (and z0 ≡ 0, α0 ≡ 0 for
notational convenience)

zi = xi − αi−1(x1, . . . , xi, ϑ1, . . . , ϑi)

αi = −cizi − zi−1 −
(
ϕi −

∑i−1
j=1

∂αi−1

∂xj
ϕj

)T
ϑi

+
∑i−1

j=1

(
∂αi−1

∂xj
xj+1 +

∂αi−1

∂ϑj
Γ
(
ϕj −

∑j−1
k=1

∂αj−1

∂xk
ϕk

)
zj

)
.

This adaptive controller guarantees global boundedness of x(·), ϑ1(·),
. . . , ϑn(·), and x1(t)→ 0, xi(t)→ xei for i = 2, . . . , n for t→∞ where

xei = −θTϕi−1(0, x
e
2, . . . , x

e
i−1), i = 2, . . . , n.
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12. Optimal Control (Definitions)

We consider continuous time system

ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn (4)

By assumption
f : Rn × Rm → Rn locally Lipschitz continuous

Set of inputs and set of solutions:

U = {u(·) : R≥0 → Rm| u(·) measurable}
X = {x(·) : R≥0 → Rn| x(·) is absolutely continuous}

We say that
(x(·), u(·)) ∈ X× U is a solution pair if it satisfies (4)
for almost all t ∈ R≥0.

Note that:
If the initial condition is important (or not clear from
context), we use x(·;x0) ∈ X and u(·;x0) ∈ U
x0, and u(·) are sufficient to describe x(·)

For (x(·), u(·)) ∈ X× U we define
Cost functional (or performance criterion)
J : Rn × U→ R ∪ {±∞} as

J(x0, u(·)) =
∫ ∞

0
ℓ(x(τ), u(τ))dτ.

Running cost: ℓ : Rn × Rm → R
(Optimal) Value function: V : Rn → R≥0,

V (x0) = min
u(·)∈U

J(x0, u(·))

subject to (4).

(We assume that the minimum exists!)

Optimal input:

u⋆(·) = arg min
u(·)∈U

J(x0, u(·))

subject to (4).
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12. Optimal Control (Linear Quadratic Regulator)

Linear system:

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ Rn

Quadratic cost function:

J(x0, u(·)) =
∫ ∞

0

(
xT (τ)Qx(τ) + uT (τ)Ru(τ)

)
dτ

Theorem

Let Q ≥ 0, R > 0. If there exists P > 0 satisfying the
continuous time algebraic Riccati equation

ATP + PA+Q− PBR−1BTP = 0

and if A−BR−1BTP is a Hurwitz matrix, then

µ(x) = −R−1BTPx

minimizes the quadratic cost function and the optimal value
function is given by

V (x0) = xT0 Px0.

Linear system

x(k + 1) = Ax(k) +Bu(k), x(0) = x0 ∈ Rn

Quadratic cost function:

J(x0, u(·)) =
∞∑

k=0

x(k)TQx(k) + u(k)TRu(k)

Theorem

Let Q ≥ 0, R > 0. If there exists P > 0 satisfying the
discrete time algebraic Riccati equation

Q+ATPA− P −ATPB
(
R+BTPB

)−1
BTPA = 0

and if A−B(R+BTPB)−1BTPA is a Schur matrix, then

µ(x) = −(R+BTPB)−1BTPAx

minimizes the quadratic cost function and the optimal value
function is given by

V (x0) = xT0 Px0.
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13. Model Predictive Control (Receding Horizon Principle)

Past Future

x(k)

k k +N

Feedback µ

Predicted state trajectory
Reference
trajectory

Predicted
input trajectory

Closed-loop trajectory

Prediction horizon N

MPC is also known as
predictive control

receding horizon control

rolling horizon control

Here, we consider discrete time systems

x+ = f(x, u), x(0) = x0 ∈ Rn

with f : Rn × Rm → Rn f(0, 0) = 0.
State constraints x ∈ X ⊂ Rn

Input constraints u ∈ U(x) ⊂ Rm
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13. Model Predictive Control (The Basic MPC Formulation)

Prediction horizon: N ∈ N ∪ {∞}
Set of feasible input trajectories of length N (depending on x0):

UN
x0

=

uN (·) : N[0,N−1] → Rm

∣∣∣∣∣∣∣
x(0) = x0,

x(k + 1) = f(x(k), u(k))
(x(k), u(k)) ∈ X× U(x)

∀ k ∈ N[0,N−1]


For clarity, note that

uN (·;x0) = uN (·) = [uN (0), uN (1), u(2), . . . , uN (N − 1)]

Cost function: JN : Rn × UN
D → R ∪ {∞},

JN (x0, uN (·)) =
∑N−1

i=0 ℓ(x(i), u(i))

(with running costs ℓ : Rn × Rm → R)

Terminal cost F : Rn → R and terminal constraints XF ⊂ Rn

Optimal control problem

VN (x0) = min
uN (·)∈UN

x0

JN (x0, uN (·)) + F (x(N))

subject to dyn. & init. cond. and x(N) ∈ XF

(⇝ finite dimensional optimization problem if N is finite)

Even if VN : Rn → R ∪ {∞} is not
known explicitly, for a given
x0 ∈ Rn, the function VN (·) can be
evaluated in x0 by solving the OCP.

Optimal open-loop input trajectory
u⋆N (·;x0) ∈ UN

D s.t. x(N) ∈ XF &

VN (x0)=JN (x0, u
⋆
N (·;x0))+F (x(N))

u⋆N (·;x0) is used to iteratively define
a feedback law µN , i.e.,

µN (x0) = u⋆N (0;x0)

xµN (k + 1)=f(xµN (k), µN (x(k))
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13. Model Predictive Control (Example)

Consider x+ = Ax+Bu with unstable origin and

A =

[ 6
5

6
5

− 1
2

6
5

]
and B =

[
1
1
2

]
Prediction horizon: N = 5

The running cost: ℓ(x, u) = xT x+ 5u2

Constraints: u ∈ U = [−2.5, 2.5], x ∈ R2 (i.e.,
D = R2 × U)

Terminal cost & constraints: F (x) = xT x, XF = R2.
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Now, use the terminal constraint XF = {0} (which
makes F (x) superfluous)

Prediction horizon N = 11 (since for N < 11 the OCP
is not feasible for x0 = [3 3]T )
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3. Linear Systems (Controllability & Observability)

Linear system with output:

ẋ = Ax+Bu, y = Cx

Definition (Controllability)
The linear system (or (A,B)) is said to be controllable, if
for all x1, x2 ∈ Rn there exists T ∈ R≥0 and
u : [0, T ]→ Rm such that

x2 = eAT x1 +

∫ T

0
eA(T−τ)Bu(τ)dτ.

Ability of a system to steer any initial state to a target state
through an appropriate input u : [0, T ]→ Rm.

Definition (Observability)
The linear system (or (A,C)) is said to be observable, if for
all x1, x2 ∈ Rn, x1 ̸= x2 there exists T ∈ R≥0 such that

CeAT x2 ̸= CeAT x1.

Determines if x(0) can be uniquely determined by measu-
ring y(t) = Cx(t) over a given time window t ∈ [0, T ].

Theorem (Controllability, Kalman matrix)
Consider the linear system defined through the pair (A,B).
The linear system (or equivalently the pair (A,B)) is
controllable if and only if

rank
(
[B AB A2B · · · An−1B]

)
= n.

Theorem (Observability)
Consider the linear system defined through the pair (A,C).
The linear system with output (or equivalently the pair
(A,C)) is observable if and only if

rank




C
CA
CA2

...
CAn−1



 = n.

(A,B) controllable if and only if (AT , BT ) observable

(A,C) observable if and only if (AT , CT ) controllable
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4. Frequency Domain Analysis (The transfer function)

Consider single-input single-output (SISO) linear systems:

ẋ(t) = Ax(t) + bu(t), y(t) = cx(t) + du(t),

Application of the Laplace transform:

sx̂(s)− x(0) = Ax̂(s) + bû(s), ŷ(s) = cx̂(s) + dû(s)

Rearrange the terms (x(0) = 0):

ŷ(s) =
(
c(sI −A)−1b+ d

)
û(s)

Identify input output relationship:

G(s) =
ŷ(s)

û(s)
= c(sI −A)−1b+ d (5)

Definition (Realization)
Consider a transfer function G(s) and assume that (5) is
satisfied for (A, b, c, d). Then G(s) is called realizable and
the quadruple (A, b, c, d) is called a realization of G(s).

Theorem (Minimal realization)
The quadruple (A, b, c, d) is a minimal realization of
G(s) = c(sI −A)−1b+ d if and only if (A, b) is controllable
and (A, c) is observable.

Theorem (Uncontrollable & unobs. modes)

Let (A, b, c, d) be a minimal realization of G(s) =
P (s)
Q(s)

.
Then λ ∈ C is a pole of G, i.e., Q(λ) = 0, if and only if λ is
an eigenvalue of A.

Definition (BIBO stability)
The linear system is called bounded-input, bounded-output
(BIBO) stable if ∥u∥L∞ <∞ implies ∥y∥L∞ <∞.

Graphical tools:
The Bode Plot & The Nyquist Criterion

L∞-norm: ∥ψ∥L∞[0,t) = ess sup
τ∈[0,t)

|ψ(τ)| = inf{η ∈ R≥0 : |ψ(t)| ≤ η for almost all τ ∈ [0, t)}
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Rearrange the terms (x(0) = 0):
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ŷ(s)
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6. Absolute Stability (The Lur’e Problem)

Consider the feedback interconnection:

ẋ = Ax+ bu
y = cx

u = −ψ(t, y)

Lur’e problem:
Which conditions on the functions ψ : R≥0 × R→ R
guarantee asymptotic stability of the origin?

Note that:
The nonlinearity can be time-dependent

We assume that the reference signal v(t) is zero.

While we focus on the SISO case, many results can
be extended to the MIMO case.

Definition (Sector condition)
Let α, β ∈ R, α < β, and Ω ⊂ R. A nonlinearity
ψ : R≥0 × R→ R satisfies a sector condition if

αy2 ≤ yψ(t, y) ≤ βy2

for all t ≥ 0 and for all y ∈ Ω. For Ω = R we say that the
sector condition is satisfied globally.

ψ(t, y)

y

αy

βy
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6. Absolute Stability (Sector Condition)

Common nonlinearities: sign : R→ R,

sat(y) =

 −1, for y ≤ −1,
y, for − 1 ≤ y ≤ 1,
1, for y ≥ 1.

dz(y) =

 y + 1, for y ≤ −1,
0, for − 1 ≤ y ≤ 1,

y − 1, for y ≥ 1.

sign(y) =

 −1, for y < 0,
0, for y = 0,
1, for y > 0,

Question:
Which nonlinearity satisfies a sector condition?

Definition (Sector condition)
Let α, β ∈ R, α < β, and Ω ⊂ R. A nonlinearity
ψ : R≥0 × R→ R satisfies a sector condition if

αy2 ≤ yψ(t, y) ≤ βy2

for all t ≥ 0 and for all y ∈ Ω. For Ω = R we say that the
sector condition is satisfied globally.

ψ(t, y)

y

αy

βy
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6. Absolute Stability (Definition & Conjectures)

Definition (Sector condition)
Let α, β ∈ R, α < β, and Ω ⊂ R. A nonlinearity
ψ : R≥0 × R→ R satisfies a sector condition if

αy2 ≤ yψ(t, y) ≤ βy2

for all t ≥ 0 and for all y ∈ Ω. For Ω = R we say that the
sector condition is satisfied globally.

Definition (Absolute stability)
Let α, β ∈ R, α < β, and Ω ⊂ R. The Lur’e system

ẋ = Ax− bψ(t, y)

is called absolutely stable (with respect to α, β,Ω) if the
origin is asymptotically stable for all ψ : R≥0 × R→ R
satisfying the sector condition for all t ≥ 0 and for all
y0 ∈ Ω.
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Definition (Sector condition)
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Definition (Absolute stability)
Let α, β ∈ R, α < β, and Ω ⊂ R. The Lur’e system

ẋ = Ax− bψ(t, y)

is called absolutely stable (with respect to α, β,Ω) if the
origin is asymptotically stable for all ψ : R≥0 × R→ R
satisfying the sector condition for all t ≥ 0 and for all
y0 ∈ Ω.

Conjecture (Aizerman’s Conjecture (1949))
Let α, β ∈ R, α < β, and suppose the origin of the linear
system ẋ = Ax+ bu, y = cx is globally asymptotically
stable for all linear feedbacks

u = −ψ(y) = −ky, k ∈ [α, β].

Then the origin is globally asymptotically stable for all
nonlinear feedbacks in the sector

α ≤
ψ(y)

y
≤ β, y ̸= 0.

⇝ Conjecture was shown to be wrong through
counterexamples.
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Let α, β ∈ R, α < β, and Ω ⊂ R. The Lur’e system

ẋ = Ax− bψ(t, y)

is called absolutely stable (with respect to α, β,Ω) if the
origin is asymptotically stable for all ψ : R≥0 × R→ R
satisfying the sector condition for all t ≥ 0 and for all
y0 ∈ Ω.

Conjecture (Kalman’s Conjecture (1957))
Let α, β ∈ R, α < β, and suppose the origin of the linear
system ẋ = Ax+ bu, y = cx is globally asymptotically
stable for all linear feedbacks

u = −ψ(y) = −ky, k ∈ [α, β].

Then the origin is globally asymptotically stable for all
nonlinear feedbacks belonging to the incremental sector

α ≤ ∂
∂y
ψ(y) ≤ β.

⇝ Conjecture was shown to be wrong through
counterexamples.
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6. Absolute Stability (Prepratation; Circle Criterion)

Definitions: (Disc in the complex plane)
center σ : R\{0} × R>0 → R
radius r : R\{0} × R>0 → R
for α ̸= 0 and β > 0 we define

σ(α, β) =
1

2

(
1

α
+

1

β

)
, r(α, β) =

sign(α)

2

(
1

α
−

1

β

)
Then, the disc D(·, ·) is defined as

D(α, β) =

{x ∈ C : x = − 1
β
+ jω, ω ∈ R}, if α = 0 < β,

{x ∈ C : |x− σ(α, β)| = r(α, β)}, if 0 < α < β,
{x ∈ C : |x− σ(α, β)| = r(α, β)}, if α < 0 < β.

Note that
for α ̸= 0, D(α, β) defines a disc centered around σ(α, β) with
radius r(α, β)

for α = 0, D(0, β) defines a vertical line
-1 -0.5 0 0.5

-1

-0.5

0

0.5

1
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6. Absolute Stability (Circle Criterion)

Theorem (Circle Criterion)
Suppose (A, b, c) is a minimal realization of G(s) and
ψ(t, y) satisfies the sector condition

αy2 ≤ yψ(t, y) ≤ βy2

globally. Then the system is absolutely stable if:
1 α = 0 < β, the Nyquist plot is to the right of the line

Re(s) = − 1
β

, (i.e., to the right of D(0, β)) and G(s) is
Hurwitz;

2 0 < α < β, the Nyquist plot does not enter the disk
D(α, β), and encircles it in the counter-clockwise
direction as many times, N , as there are right-half
plane poles of G(s); or

3 α < 0 < β, the Nyquist plot lies in the interior of the
disk D(α, β), and G(s) is Hurwitz.

Example
Consider the transfer function

G(s) =
s+ 1

s2 − 2s+ 2
=

s+ 1

(s− 1 + j)(s− 1− j)

Two poles in right-half plane⇝ absolute stability (Item 2)
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13. Model Predictive Control (Algorithm)

Input: Measurement of the initial condition x(0); prediction
horizon N ∈ N ∪ {∞}; running cost ℓ : Rn+m → R; constraints
D ⊂ Rn+m; terminal cost F : Rn → R and terminal constraints
XF ⊂ Rn.

For k = 0, 1, 2, . . .

1 Measure the current state of the system x+ = f(x, u) and
define x0 = x(k).

2 Solve the optimal control problem

VN (x0) = min
uN (·)∈UN

D

JN (x0, uN (·)) + F (x(N))

subject to dyn. & init. cond. and x(N) ∈ XF

to obtain the open-loop input u⋆N (·;x0).
3 Define the feedback law

µN (x(k)) = u⋆N (0;x0).

4 Compute x(k + 1) = f(x(k), µN (x(k))), increment k to
k + 1 and go to 1.
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14. Differential Geometric Methods

Consider:

ẋ = f(x) + g(x)u

y = h(x)

with x ∈ Rn, u ∈ R, y ∈ R, f(0) = 0.
Goal: Compute coordinate transformation

z = Φ(x), Φ : Rn → Rn

so that 
ż1
...

żr−1

żr

 =


z2
...
zr

α(z) + β(z)u


 żr+1

...
żn

 = γ(z)

y = z1

where r ∈ {1, . . . , n} and α, β : Rn → R, γ : Rn → Rn−r .

If Φ is known and β(z) ̸= 0, then:
the coordinate transformation v = α(z) + β(z)u leads
to a linear controller (in v) can be used to ensure
y(t)→ 0

the control law

u =
1

β(Φ(x))
(v − α(Φ(x)))

in the original variables is only well-defined if
zr+1, . . . , zn are well behaved.

⇝ Feedback Linearization
Coordinate transformation leads to

input-to-state linearization (if r = n)

input-to-output linearization (if r < n)
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14. Differential Geometric Methods (Relative degree and coordinate transformation)
Consider:

ẋ = f(x) + g(x)u

y = h(x)

Lie derivative: f, g, h : Rn → R

Lfλ(x) = ⟨∇λ(x), f(x)⟩

Repeated Lie derivatives:

L0
fh(x) = h(x)

LgLfh(x) = ⟨∇Lfh(x), g(x)⟩,

Lk
fh(x) = ⟨∇L

k−1
f h(x), f(x)⟩

Definition (Relative degree)

The system has relative degree r ∈ N at a point x◦ ∈ Rn if
(i) the repeated Lie derivatives satisfy LgLk

fh(x) = 0 for
all x in a neighborhood of x◦ and all k < r − 1; and

(ii) the repeated Lie derivative satisfies
LgL

r−1
f h(x◦) ̸= 0.

Remark

The relative degree of a linear system y(s) =
P (s)
Q(s)

u(s) is
defined as the difference between the degree of the
denominator and numerator.

Coordinate transformation:
For r = n, define

z = Φ(x) =


ϕ1(x)
ϕ2(x)

...
ϕr(x)

 =


h(x)
Lfh(x)

...
Lr−1
f h(x)

 . (6)

If r ̸= n, augment (6) with additional n− r functions.
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14. Differential Geometric Methods (Input-to-state & input-to-output linearization)

Consider:

ẋ = f(x) + g(x)u

y = h(x)

Lie derivative: f, g, h : Rn → R

Lfλ(x) = ⟨∇λ(x), f(x)⟩

Repeated Lie derivatives:

L0
fh(x) = h(x)

LgLfh(x) = ⟨∇Lfh(x), g(x)⟩,

Lk
fh(x) = ⟨∇L

k−1
f h(x), f(x)⟩

Additional remarks:
Lie bracket: f, g : Rn → Rn,

[f, g](x) = ∂g
∂x

(x)f(x)− ∂f
∂x

(x)g(x)

⇝ Concept used to verify controllability of
nonlinear systems

The zero dynamics are the internal
dynamics when the output is kept at 0 by u

Proposition
Consider the system with relative degree r ∈ N at x◦ ∈ Rn.

If r < n, then there exist n− r functions
ϕr+1, . . . , ϕn : Rn → R, so that Φ(x) = [ϕ1, . . . , ϕn]T has a
nonsingular Jacobian at x0 and

Lgϕi(x) = 0, r + 1 ≤ i ≤ n.

For r ≤ n, the coordinate transformation satisfies

ż1 = ⟨∇ϕ1(x), ẋ⟩ = Lfh(x) + Lgh(x)u = Lfh(x) = z2

ż2 = ⟨∇(Lfh(x)), ẋ⟩ = L2
fh(x) = z3

...

żr−1 = ⟨∇(Lr−2
f h(x)), ẋ⟩ = Lr−1

f h(x) = zr

żr = ⟨∇(Lr−1
f h(x)), ẋ⟩ = Lr

fh(x) + LgL
r−1
f h(x)u,

and if r < n, the remaining coordinates i ∈ {r + 1, . . . , n}
satisfy

żi = ⟨∇ϕi(x), ẋ⟩ = Lfϕi(x) + Lgϕi(x)u = Lfϕi(x).
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