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1. Nonlinear Systems — Fundamentals (Dynamical Systems)

(Autonomous) First order differential equations:

@(t) = La(t) = f(z(t), f:R" —>R" Q)

@ A solution is an absolutely continuous function that
satisfies (1) for almost all ¢.

Non-autonomous/time-varying system:
Il'(t) = f(t,:l)(t)), f : RZO x R" — R"

Systems with external inputs f : R™ x R™ — R"™:
&= flz,u), &= flz,w),
@ u:R" - R™, z— u(z) < degree of freedom

@ w:R—>R™, t— w(t) < exogenous signal
(disturbance or reference)
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1. Nonlinear Systems — Fundamentals (Dynamical Systems)

(Autonomous) First order differential equations: Definition (Equilibrium, & = 0)

#(t) = () = f(z(t), f:R® >R" (1) The point z¢ € R™ is called equilibrium of the system

z = f(x) or & = f(t,x), respectively, if
@ A solution is an absolutely continuous function that %z(t) = f(z°) =0,
satisfies (1) for almost all ¢. d .
E:E(t) — f(t, x ) =0 Vt € Rzo.

Non-autonomous/time-varying system: The pair (z¢,u¢) € R™ x R™ is called an equilibrium pair

B(t) = £t 2(1)), f:Rso x R" = R" of the system = = f(x,u) if

Fa(t) = f(@°,u®) = 0.

Systems with external inputs f : R™ x R™ — R"™:

@ = f(z,u), i = f(z,w), @ Without loss of generality ¢ = 0 (or (z¢,u®) = 0).
@ Achieved through coordinate transf. z = =z — z°¢, i.e.,
@ u:R" - R™, z— u(z) < degree of freedom F(2) = f(z +2°) yields i = f(2)

@ w:R—>R™, t— w(t) < exogenous signal
(disturbance or reference)

where (z¢ = 0)

) =fE"+2%) = f(z°) =0
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1. Nonlinear Systems — Fundamentals (Comparison Functions)

Definition (Class-P, K, K, £, KL functions)

@ A continuous function p : R>¢ — R is said to be
positive definite (p € P) if p(0) = 0 and
p(s) >0V s € Rxo.

@ « € P is said to be of class-K (« € K) if « strictly
increasing.

@ o € K is said to be of class-K (o € Koo) if
lim a(s) = co.
8§—r 00
@ A continuous function o : R~y — R~ is said to be of

class-£L (o € L) if o is strictly decreasing and
lim o(s) = 0.
S§—00

@ A continuous function 8 : RZ | — R is said to be of
class-KL (8 € KL) if for each fixed ¢ € R,
B(+,t) € Koo and for each fixed s € Rxo, B(s,) € L.

Koo CKCP

Some properties:
@ Class-K functions are invertible.
@ If a1, a2 € Koo then

a(s) = a1 (a2(s)) = a1 0 a2(s) € Koo

@ lfaeK,0€ Lthenaoo € L.

T s
— 12 €P e ¢ K]

(s)
a(s)

K, i

ek o
(5) € K, tanh(s) ¢ Koo

— 7 € Koo
—s +sin(s) € Ko

s s
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2. Nonlinear Systems — Stability Notions (Definitions)

Consider

&= f(z),  (with f(0) =0)

Definition (Stability)

The origin is (Lyapunov) stable if, for any € > 0 there exists
§ = () > 0 such that if |z(0)| < § then, for all ¢ > 0,

lz(®)| < e.

Equivalent Definition:
The origin is stable if there exists « € K and an open neigh-
borhood around the origin D C R™, such that

e(®)] < ale(0))),  Vt>0, Vao € D.

Definition (Instability) J

The origin is unstable if it is not stable.
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2. Nonlinear Systems — Stability Notions (Definitions)

Consider & = f(x) with f(0) =0
Definition (Attractivity)

The origin is attractive if there exists § > 0 such that if
|z(0)] < 6 then
lim z(t) =0.

t—o00

Definition (Asymptotic stability)

The origin is asymptotically stable if it is both stable and
attractive.
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2. Nonlinear Systems — Stability Notions (Definitions)

Consider & = f(x) with f(0) =0
Definition (Attractivity)

The origin is attractive if there exists § > 0 such that if
|z(0)] < 6 then
lim z(t) =0.

t—o0

Definition (Asymptotic stability)

The origin is asymptotically stable if it is both stable and
attractive.

Definition (K £-stability)

The system is said to be K L-stable if there exists § > 0
and 8 € KL such that if |z(0)| < & then for all ¢ > 0,

lz()] < B(lz(0)], 7).

Proposition

The origin is asymptotically stable if and only if it is
K L-stable.

P. Braun (ANU) A Run Through Nonlinear Control Topics

5/37



2. Nonlinear Systems — Stability Notions (Definitions)

Consider & = f(x) with f(0) =0
Definition (Attractivity)

The origin is attractive if there exists § > 0 such that if
|z(0)] < 6 then
lim z(t) =0.

t— o0

Definition (Asymptotic stability)

The origin is asymptotically stable if it is both stable and
attractive.

Proposition

The origin is asymptotically stable if and only if it is
K L-stable.

Definition (Exponential stability)

The origin is exponentially stable for & = f(z) if there exist
6, A\, M > 0 such that if |z(0)| < ¢ then for all ¢ > 0,

|z(t)] < Mz (0)|e™". ()

v

Definition (K.L-stability)

The system is said to be K L-stable if there exists § > 0
and 8 € KL such that if |z(0)| < & then for all ¢ > 0,

lz()] < B(lz(0)], 7).

Example: The origin of
@ & = z is unstable
@ ¢ = 0is stable
@ i = —z3 is asymptotically stable
@ & = —z is exponentially stable

P. Braun (ANU)
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2. Nonlinear Systems — Stability Notions (Lyapunov’s Second Method)

Consider @ = f(x) with f(0) =0

Theorem (Lyapunov stability theorem)

LetV : R™ — R, cont. differentiable and a1, as € K~ such
that, for all z € R™,

o1 (lz]) < V(e) < o(lz]) and  (VV(z), f(2))< 0.
Then the origin is globally stable.
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2. Nonlinear Systems — Stability Notions (Lyapunov’s Second Method)

Consider @ = f(x) with f(0) =0

Theorem (Lyapunov stability theorem)

LetV : R™ — R, cont. differentiable and o, as € Koo such
that, for all z € R™,

o1 (lz]) < V(e) < o(lz]) and  (VV(z), f(2))< 0.
Then the origin is globally stable.

Theorem (Asymptotic stability theorem)

LetV : R™ — R, cont. differentiable, a1, s € Koo, and
p € P such that, for all x € R™,

ai(lz]) < V(z) < ex(lz]) and (VV(z), f(2))< —p(|z)).
Then the origin is globally asymptotically stable.

Theorem (Exponential stability theorem)

LetV : R™ — R, cont. differentiable, constants A1, \o,c > 0
andp > 1 such that, for all z € R™

Az|? < V(z) < X2lz|? and (VV(z), f(z))< —cV (x).
Then the origin is globally exponentially stable.
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2. Nonlinear Systems — Stability Notions (Lyapunov’s Second Method)

Consider & = f(x) with f(0) =0

Theorem (Lyapunov stability theorem)

LetV : R™ — R, cont. differentiable and a1, as € K~ such
that, for all x € R™,

ar(lz]) S V(x) <ax(lz))  and  (VV(2), f(2))< 0.
Then the origin is globally stable.

Theorem (Asymptotic stability theorem)

LetV : R™ — R, cont. differentiable, a1, s € Koo, and
p € P such that, for all x € R™,

ai(lz]) < V(z) < ex(lz]) and (VV(z), f(2))< —p(|z)).
Then the origin is globally asymptotically stable.

Theorem (Exponential stability theorem)

LetV : R™ — R, cont. differentiable, constants A1, \o,c > 0
andp > 1 such that, for all z € R™

Az|? < V(z) < X2lz|? and (VV(z), f(z))< —cV (x).
Then the origin is globally exponentially stable.

Theorem (Partial Convergence)

LetV : R™ — R, cont. differentiable, o1, a2 € K, and
W :R™ — R, such that, for all z € R™,

a1(lz]) S V(z) < az(z]) and (VV(z), f(z))< —W(z

Then lims oo W (z(t)) = 0.

).

v

Theorem (Lyapunov theorem for instability)

LetV : R™ — R cont. differentiable and e > 0 such that

(VV (@), f(x))>0 Ve B:\{0}
Then the origin is (completely) unstable.

Theorem (Chetaev’s theorem)

LetV : R™ — R be cont. differentiable with V' (0) = 0 and
Or ={x € B-(0)| V(x) > 0} # 0 forallr > 0. If for
certainr > 0,

(VV (), f(z))> 0, VzeOr
then the origin is unstable.
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2. Nonlinear Systems — Stability Notions (Lypunov’s Second Method)

Intuition:

@ Lyapunov functions represent energy associated with
the state of a system

@ If energy is (strictly) decreasing, then an equilibrium is
(symptotically) stable

V(a(t) = (VV(z), f(z)) <O Vo #0
Extensions:
@ (LaSalle’s) Invariance principles
@ Similar results for time-varying systems

@ Converse Lyapunov results (i.e., asymptotic stability
implies existence of Lyapunov function)
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3. Linear Systems (Stability)

Consider:
&= f(z),  f(0)=0, fcont. differentiable
Define (Jacobian evaluated at the origin):

Theorem A [Bf(fv)]
=0

Linear Systems:
i = Az, A€ R™*"

oz
Linearization of & = f(x) atz = 0:

For the linear system & = Az, the following are equivalent:
@ The origin is asymptotically/exponentially stable;
@ All eigenvalues of A have strictly negative real parts; 2(t) = A=(t)

© Forevery Q > 0, there exists a unique P > 0,
satisfying the Lyapunov equation

ATP+ PA=—Q.

Theorem

Consider z = f(x) (f cont. differentiable) and its
linearization z = Az. If the origin z¢ = 0 of z = Az is
. globally exponentially stable then the origin ¢ = 0 of
Lyapunov Function: & = f(z) is locally exponentially stable.

V(z) = 2T Pz

It holds that:

V(z(t) = % (a:TPw) =iT Pz + 2T Pi

=27 AT Pz + 2T PAz = —zTQz
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3. Linear Systems (Stability)

Consider:
&= f(z),  f(0)=0, fcont. differentiable
Define (Jacobian evaluated at the origin):

Theorem A [0f(fv)]
=0

Linear Systems:
i = Az, A€ R™*"

oz
Linearization of & = f(x) atz = 0:

For the linear system & = Az, the following are equivalent:
@ The origin is asymptotically/exponentially stable;
@ All eigenvalues of A have strictly negative real parts; 2(t) = A=(t)

© Forevery Q > 0, there exists a unique P > 0,
satisfying the Lyapunov equation

ATP+ PA=—Q.

Theorem

Consider z = f(x) (f cont. differentiable) and its
linearization z = Az. If the origin z¢ = 0 of z = Az is
globally exponentially stable then the origin ¢ = 0 of

Lyapunov Function: & = f(z) is locally exponentially stable.
_ T
Vie)=a" Pz Semidefinite programming:
It holds that: I<P n elaf2 < V(z)
V() = & (a:TPw) =iTPz+ TP ATP + PA< —¢l (VV(z), Az) < —elz|?
= 2TAT Pz + 2T PAz = —2TQx ~+ Construction can be extended to systems with

polynomial right-hand side
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5. Discrete Time Systems (Fundamentals)

Discrete time systems:
zq(k + 1) = F(za(k), ua(k)), z4(0) =xzq0€R"
ya(k) = H(za(k), ua(k))

Time-varying discrete time system (k > ko > 0):
zq(k+1) = F(k,zq(k)), za(ko) =zq,0 € R"

Time invariant discrete time systems without input:
:cd(k + 1) = F(xd(k)), wd(O) =2x4,0 € R™,

Shorthand notation for difference equations:

x; = F(zq4,uq),
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5. Discrete Time Systems (Fundamentals)

Discrete time systems:
md(k-l-l) _F(xd( ) ( ))7 xd(o) = Zd,0 S
ya(k) = H(za(k), ua(k))

Time-varying discrete time system (k > ko > 0):
;I,'d(k =+ 1) = F(k7 :Ed(k:)), zd(k()) =240 € R™

Time invariant discrete time systems without input:
xd(k? + 1) = F(xd(k)), :L‘d(O) =2x4,0 € R™,

Shorthand notation for difference equations:

x; = F(zq4,uq),

Definition (Equilibrium)
@ The point x5 € R™ is called equilibrium if 2§ = F(z¢)
orz§ = F(k,z) for all k € N is satisfied.

@ The pair (z5,ug) € R™ x R™ is called equilibrium
pair of the system if x5 = F(z§, ug) holds.

Again, without loss of generality we can shift the equilibrium
(pair) to the origin.

Definition (Equilibrium, & = 0)

The pomt ai® e R™ is called an equilibrium of the system

f(@)if Fa(t) = f(z?) =0
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5. Discrete Time Systems (Stability)

Discrete time systems: Consider
zt = F(x), z(0) =29 € R"

Definition (K L-stability)

The origin of the discrete time system is is globally
asymptotically stable, or alternatively K £-stable, if there
exists 8 € KL such that

lz(k)| < B(1=(0)], k),
is satisfied for all z(0) € R™.

VEkEN,

Continuous time systems: Consider
z = f(x), z(0) =29 € R™

Definition (KL-stability)

The origin of the continuous time system is globally
asymptotically stable, or alternatively KL-stable, if there
exists 8 € KL such that

lz(0)] < B(|=(0)], ),
is satisfied for all z(0) € R™.

VteR>,

Theorem (Lyapunov stability theorem)

Suppose there exists a continuous function V : R™ — R>q
and functions a1, as € Koo such that, for all x € R,

a1 (lz]) < V() < as(|zf)
V(F(z))—V(z) <0
Then the origin is stable.

Theorem (Lyapunov stability theorem)

Suppose there exists a smooth function V : R™ — R>q
and functions a1, as € Koo such that, for all x € R™,

o (jz)) < V(=) < aa(jzl)
(VV (), f(z)) <0
Then the origin is stable.

P. Braun (ANU)
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5. Discrete Time Systems (Linear systems)

Consider the discrete time linear system

zt = Az, z(0) € R™ [Solution z(k) = A*z(0)]

Theorem
The following properties are equivalent:
@ The origin ¢ = 0 is exponentially stable;

@ The eigenvalues \1, ..., \n € C of A satisfy |\;| < 1
foralli =1,...,n;and

© ForQ > 0 there exists a unique P > 0 satisfying the
discrete time Lyapunov equation

ATpA—P=—Q.

V.

Consider the continuous time linear system

i = Az, z(0) € R™

[Solution z(t) = eA*z(0)]

Theorem
The following properties are equivalent:
@ The origin z¢ = 0 is exponentially stable;

@ The eigenvalues \1, ..., \n, € C of A satisfy \; € C~
foralli =1,...,n; and

@ ForQ > 0 there exists a unique P > 0 satisfying the
continuous time Lyapunov equation

ATP 4+ PA=—Q.

A matrix A which satisfies |\;| < 1foralli =1,...,nis
called a Schur matrix.

P. Braun (ANU)
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A matrix A which satisfies \; € C~ foralli = 1,...,n is
called a Hurwitz matrix.
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5. Discrete Time Systems (Sampling)

Derivative for continuously differentiable function:
r ozt A) —2(t)
o) = Jim, =5

Difference quotient (for A > 0 small):

HWABI =2 o) = 40) = Falt),u)

or equivalently
z(t+ A) = z(t) + Af(z(t),u(t))

Approximated discrete time system (identify ¢ with k& - A)

o} = F(zg,uq) = zq + Af (24, ua)

~~ This discretization is known as (explicit) Euler method.

Approximation of £ = 1.1z

Euler discretization: 2T = (1 + Al.1)z

2.5

—— Exact solution
—o-A=1

A =05
—o—-A=0.1
oA =0.05

P. Braun (ANU) A Run Through Nonlinear Control Topics
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5. Discrete Time Systems (Runge-Kutta Methods)

@ Consider
== g(t,x).
@ Runge-Kutta update formula:

S
a(t+A) =) + A bik;
where i=1

k1 = g(t,z(t))
ko = g(t + A,z + A(azlk‘l))
ks = g(t + c3A, z + A(az1 k1 + az2k2))

ks = g(t+ cs A, @ + Alasikr + aszkz + -+ 4 ags_1)k(s)))
@ s c N(stage); a;j,bp,c; ER,1<j<i<s51<l<s
(given parameters)

@ The case f(z,u) for sample-and-hold inputs
u(t +0) = uqg € R™ forall § € [0,A) is covered through

g9(t,x(t)) = f(2(t), ua)
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5. Discrete Time Systems (Runge-Kutta Methods)

@ Consid
onsiaer ) @ Butcher tableau:
== g(t,x). 0
@ Runge-Kutta update formula: €2 | a21
s c3 a3l az2
a(t+A) =) + A bik; o )
where i=1 cs | as1 as2 o agso1y
b b bs— bs
R (0) [ B =
ko = g(t + ca\, x + Alagi k1)) ~+ ¢; is only necessary for time-varying systems
ks = g(t + c3A, z + A(az1 k1 + az2k2)) @ Examples: The Euler and the Heun method
0
: L’T and 1 1
ks :g(t+CSA7x+A(aslk1+a32k2+"'+a5(571)k‘(8))) 5 5
@ s c N(stage); aij,be,c; ER,1<j<i<s,1<L<5s @ Heun Method: Update of z in three steps
(given parameters) . k= f(2(t), uq),
@ The case f(z,u) for sample-and-hold inputs ka = f(x(t) + Ak, ug),

u(t +0) = uqg € R™ forall § € [0,A) is covered through
g9(t,x(t)) = f(2(t), ua)

a(t+A) =a(t) + A (§k1 + $k2) .
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5. Discrete Time Systems (Runge-Kutta Methods in Matlab)

The function ode23.m relies on the Butcher tableaus The function ode45 . m relies on the Butcher tableaus
0
1 1 0
312 3 1 1
and 210 = = =
112 1 a 3] 3 9
g . O I . |
24 4 3 8 8 | 12 250 ealas 212
9 7 9
@ One scheme is used to approximate z(t + A). 1 % 7%3;7535 4665%]72 AT
. . Ll s TE Ry I ThE o
@ The second scheme is needed to approximate the 384 1113 102 6784 84
error, to select the step size A. = 0 ZE e = 5 O
5179 7571 393 _ 92097 187 RS
57600 16695 640 339200 2100 40
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7. Input-to-State stability (Definition & Motivation)

Input-to-state stability (ISS) for nonlinear systems:
i = f(z,w), z(0)==z0€R"
w €W = {w: R>o — R™| w essentially bounded}.

Definition (Input-to-state stability)

The system is said to be input-to-state stable (ISS) if there
exist 8 € KL and v € K such that solutions satisfy

[z()] < B(lz(0)],1) + (lwllzo)
forallz € R™, w € W,and t > 0.

ey € K: ISS-gain; e 3 € KL: transient bound.

3 |

— =0l

250 ol
\ — (20 + ()
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7. Input-to-State stability (Definition & Motivation)

Input-to-state stability (ISS) for nonlinear systems:
i = f(z,w), z(0)==z0€R"
w €W = {w: R>o — R™| w essentially bounded}.

Definition (Input-to-state stability)

The system is said to be input-to-state stable (ISS) if there
exist 8 € KL and v € K such that solutions satisfy

[z()] < B(lz(0)],1) + (lwllzo)
forallz € R™, w € W,and t > 0.

ey € K: ISS-gain; e 3 € KL: transient bound.

30
\ 7‘,(, I
25 —(llwlle.)
\ — Bz 1) +y(l[wlle.)
2b N\
15 S
/ [
1
0.5
0
0 5 10
i3
P. Braun (ANU)

Example
Consider the nonlinear/bilinear system:
T =—a+ zw.
@ The system is 0-input globally asymptotically stable
(since w = 0 implies © = —x and so z(t) = z(0)e~*)

@ However, consider the bounded input/disturbance
w = 2. Then # = z and so z(t) = z(0)e?.

@ Consequently, it is impossible to find 5 € XL and
~ € K such that

lz(t)] = |z(0)le* < B(lz(0)],t) +(2).

A Run Through Nonlinear Control Topics 15/37



7. Input-to-State Stability (Lyapunov Characterizations)

Definition (Input-to-state stability)

& = f(x,w) is said to be input-to-state stable (ISS) if there
exist 8 € KL and v € K such that solutions satisfy

[z()] < B(|z(0)],1) + v (lwllco)
forall z € R®, w € W, and ¢t > 0.

Theorem (ISS-Lyapunov function)

& = f(x,w) is ISS if and only if there exist a cont.
differentiable fen. V' : R™ — R>g and a1, a2, a3,0 € Koo
such that for all z € R™ and all w € R™
ai(|z]) < V(z) < az(|z))
(VV (), f(z,w)) < —as(|z]) + o(|w])
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7. Input-to-State Stability (Lyapunov Characterizations)

Definition (Input-to-state stability)

& = f(x,w) is said to be input-to-state stable (ISS) if there
exist 8 € KL and v € K such that solutions satisfy

lz(®)] < B(|z(0)[,¢) + v (lwllzo.)
forall z € R®, w € W, and ¢t > 0.

Theorem (ISS-Lyapunov function)

& = f(x,w) is ISS if and only if there exist a cont.
differentiable fen. V' : R™ — R>g and a1, a2, a3,0 € Koo
such that for all x € R™ and all w € R™
ai(|z]) < V(z) < az(|z))
(VV (), f(z,w)) < —as(|z]) + o(|w])

P. Braun (ANU)

Example

Consider

&= f(z,w) = —2—2° +zw, =z(0)=z0cR

The candidate ISS-Lyapunov function V (z) = S22

(VV (@), f(z,w)) = (&, —z — 2 + zw)

= g% — gt +z2w

57m27x4+%x4+ w2
_ .2 1.4, 1 2
=—zx 5T +2w

1
2

@ The inequality follows from Young’s inequality:
1 1
el 2. ls
yz < 2y + 2z
@ Define a(s) = s + 1s* and o(s) = 152, Then

V() < —a(lz]) + o(lw])
i.e., V is an ISS-Lyapunov function, the system is ISS.
w
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7. Input-to-State Stability (Cascade Interconnections)

—P| i1 = fi(x1, w1) P B2 = fo(x2, w2) F————P>

Ey| _ [ fr(@r,wr)
) fa(z2, 1)
Theorem (ISS Cascade)
Consider the system with [z1,z2]T € R™, wa = x1. If each

of the subsystems are ISS, then the cascade
interconnection is ISS with wy as input and x as state.

P. Braun (ANU A Run Through Nonlinear Control Topics 17/37
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8. LMI Based Controller and Antiwindup Designs

sat(u)

Compact representation: (z = [z, 2117 € R")

A

|

C

|z 5
P
)
C ¢

Plant & Controller:
Apzp + By sat(u) + Byw
Cp,yxp + Dp yw
Cp,zp + Dp,zw
c. e = Acme+ ch
’ = Cexc+ Dc,yy

o]
——
8
N e
([ ]

K

?]

G

P. Braun (ANU)

Ap + BpDeyCpy BpCe | =By | BpDeyDypy + Bu i@ = Ax+ Bq+ Euw

Chp.y ¢ 0 cDp y z = Czx+ Dg+ Fw

D,z 0 0 D,z v = Kx+ Lqg+ Guw
De,yCpy Ce 0 DeyDyp oy g = u—sat(u)

A Run Through Nonlinear Control Topics
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8. LMI Based Controller and Antiwindup Designs (Linear Controller Design)

Consider:
& = Az + Bu
u=Kzx
Goal: Find stabilizing controller, i.e., find K and P > 0:
V(z(t) = z(t)T Pz(t) >0, V(z(t)) <0 Va(t) #0
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8. LMI Based Controller and Antiwindup Designs (Linear Controller Design)

Consider:
& = Az + Bu
u=Kzx
Goal: Find stabilizing controller, i.e., find K and P > 0:
V(z(t) = z(t)T Pz(t) >0, V(z(t)) <0 Va(t) #0
In terms of definite matrices:
P>0, (A+BK)'P+PA+BK)<D0,
P>0, ATP+KTBTP+ PA+PBK <0
Define A = P71, & = KA:
A>0, AAT + AKTBT + AN+ BKA <0,
A >0, AAT + ®TBT + AN + B® < 0,
LMI (as convex optimization problem):
R}ig f(A, @)

subjectto 0< @
0> AAT + T BT + AA + B®
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8. LMI Based Controller and Antiwindup Designs (Linear Controller Design)

Consider:
& = Az + Bu Lemma (Schur Complement)
u= Kz Let@Q € R™*™ and R € R7*4, symmetric, and let
Goal: Find stabilizing controller, i.e., find K and P > 0: S € R™*4. Then
_ T y Q S R<O0
V(z(t)) = z(t)” Px(t) >0, V(xz(t)) <0 Vz(t)#0 [ sT R ] <0 & Q- SR-18T <0

In terms of definite matrices:

P>0, (A+BK)'P+PA+BK)<D0,
P>0, ATP+KTBTP+ PA+PBK <0
Define A = P~1, & = KA:
A>0, AAT + AKTBT + AN+ BKA <0,
A >0, AAT + ®TBT + AN + B® < 0,
LMI (as convex optimization problem):
R}ig f(A, @)
subjectto 0< @
0> AAT + ®TBT 4+ AA + B®
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8. LMI Based Controller and Antiwindup Designs (Linear Controller Design)

Consider:
& = Az + Bu
u=Kzx
Goal: Find stabilizing controller, i.e., find K and P > 0:
V(z(t) = z(t)T Pz(t) >0, V(z(t)) <0 Va(t) #0
In terms of definite matrices:
P>0, (A+BK)'P+PA+BK)<D0,
P>0, ATP+KTBTP+ PA+PBK <0
Define A = P71, & = KA:
A>0, AAT + AKTBT + AN+ BKA <0,
A >0, AAT + T BT + AN+ B® <0,
LMI (as convex optimization problem):
min f(A, @)
subjectto 0< @
0> AAT + ®TBT + AA + BD

P. Braun (ANU)

Lemma (Schur Complement)

Let@Q € R™*™ and R € R7*4, symmetric, and let
S € R"*4. Then

Q S <0 o R<O0
sT R Q- SR1ST <0

Lemma (S-Lemma or S-Procedure)

Let My, My € R™*", symmetric, and suppose there exists
¢* € R” such that (¢*)T M1¢* > 0. Then the following
statements are equivalent:

@ There exists T > 0 such that Mo — M7 > 0.

@ Forall ¢ # 0 such that ¢T M1 ¢ > 0 it holds that
¢T Mo¢ > 0.

@ If (1) is satisfied, then (2) is satisfied
@ For known T, (1) is an LMI which can be used to verify

@).
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9. Control Lyapunov Functions

Consider the nonlinear system
&= f(z,u)
@ f:R" xR™ — R"
@ state z and control input u

@ Goal: Define a feedback control law u = k(x) which
asymptotically stabilizes the origin.

P. Braun (ANU) A Run Through Nonlinear Control Topics 20/37



9. Control Lyapunov Functions

Consider the nonlinear system
z = f(z,u)
@ f:R" x R™ — R™
@ state z and control input u
@ Goal: Define a feedback control law u = k(x) which
asymptotically stabilizes the origin.

Control Lyapunov function: V' : R™ — Rxq
@ In terms of a feedback law u = k(z),

AV(@(t) = (VV(2), f(z, k(x))) <0,  Va#0
~ V is a Lyapunov function for & = f(x, k(z)) = f(x)
@ For each = # 0 we can find « such that
SV () = (VV(2), f(z,u) <0

P. Braun (ANU) A Run Through Nonlinear Control Topics 20/37



9. Control Lyapunov Functions

Consider the nonlinear system
Definition (Control Lyapunov function (CLF))

&= f(z,u)
@ f:R" xR™ — R" Consider the nonlinear system and a1, a2 € Koo A
. continuously differentiable function V' : R™ — R is called
@ state = and control input u control Lyapunov function if
@ Goal: Define a feedback control law u = k(x) which a1(|z]) € V(z) < az(|z)), Vz € R,

asymptotically stabilizes the origin.
and for all z € R™\{0} there exists © € R™ such that

Control Lyapunov function: V' : R™ — Rxq (VV(z), f(z,u)) <O0.
@ Interms of a feedback law u = k(z), /

%V(:c(t)) = (VV(z), f(z,k(z))) <0, Vz#£0

~ V is a Lyapunov function for & = f(x, k(z)) = f(x)
@ For each = # 0 we can find « such that
SV () = (VV(2), f(z,u) <0

20/37
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9. Control Lyapunov Functions (Control Affine Systems)

Control affine systems Definition (Control Lyapunov function (CLF))
z = f(z) + g(x)u Consider the nonlinear system & = f(z, ) and
Lo a1, as € Koo A continuously differentiable function
Assumptions: V :R™ — Ry is called control Lyapunov function if

@ for simplicity we focus on v € R

@ f,g:R"™ — R" (locally Lipschitz)

@ f(0) = 0 without loss of generality
Lie derivative notation

ai(lz]) £ V(z) < az(lz),  VaeR",
and for all 2 € R™\{0} there exists u € R™ such that
(VV(z), f(z,u)) <O0.

LyV(z) = (VV (), f(z))
The decrease condition:
V(z) = (VV(2), f(z) + g(z)u)
=LsV(x)+ LgV(z)u <0, Vaz#O0.

P. Braun (ANU) A Run Through Nonlinear Control Topics
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9. Control Lyapunov Functions (Control Affine Systems)

Control affine systems
&= f(z) +g(z)u
Assumptions:
@ for simplicity we focus on v € R
@ f,g:R"™ — R" (locally Lipschitz)
@ f(0) = 0 without loss of generality
Lie derivative notation
LyV(x) = (VV(z), f(z))
The decrease condition:
V(z) = (VV(2), f(z) + g(z)u)
=L{V(x)+ LgV(z)u <O,

P. Braun (ANU)

Vaz#D0.

Definition (Control Lyapunov function (CLF))

Consider the nonlinear system & = f(z, ) and
a1, as € Koo A continuously differentiable function
V :R™ — Ry is called control Lyapunov function if

ai(lz]) £ V(z) < az(lz),  VaeR",
and for all 2 € R™\{0} there exists u € R™ such that
(VV(z), f(z,u)) <O0.

The decrease condition for control affine systems:
LiV(z) <0 Y z€R™\{0} suchthat LyV(z) =0
In other words
@ If L,V (z) = 0 (i.e., we have no control authority)
@ then LV (x) < 0 needs to be satisfied

A Run Through Nonlinear Control Topics 21/37



9. Control Lyapunov Functions (Sontag’s Universal Formula)

Consider a control affine system (u € R)
&= f(z) + g9(z)u
with corresponding CLF V/, i.e.,
LyV(z) <0 V ze€R™\{0} suchthat LyV(z) =0
Then, for k > 0 define the feedback law

k() = { _ (li n LfV(x)+\/LfV(w)2+LgV(w)4’) LoV(), LyV(z) 20

LgV(z)2
0, LgV(z)=0

P. Braun (ANU) A Run Through Nonlinear Control Topics

The feedback law

asymptotically stabilizes the origin

inherits the regularity properties of
the CLF except at the origin

is continuous at the origin if the CLF
satisfies a small control property (i.e.,
|k(z)| — O for |z| — 0)
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9. Control Lyapunov Functions (Sontag’s Universal Formula)

Consider a control affine system (u € R)
i = f(z) + g(z)u
with corresponding CLF V/, i.e.,
LyV(z) <0 V z€R™\{0} suchthat LyV(z) =0
Then, for £ > 0 define the feedback law

() = { _ (n+ LfV(w)+\/LfV(x)2+LgV(w)4) LyV(2), LyV(z)£0

LgV(x)2
0, LyV(z)=0

Sketch of the proof: For x = 0 it holds that
V() = LyV(z) + LgV (2)k(z)

L;V(x)+ /LiV(x)? + LgV (z)*
LgV(x)?

=LsV(z) — LgV(x) < > L,V (x)

The feedback law

= LyV(2) = LV (@) = /LiV(@)2 + LV (@)t = —\/L;V(2)? + LoV ().

e x> 0 adds aterm —x(LgV (z))? (which guarantees certain ISS properties)

P. Braun (ANU) A Run Through Nonlinear Control Topics

asymptotically stabilizes the origin

inherits the regularity properties of
the CLF except at the origin

is continuous at the origin if the CLF
satisfies a small control property (i.e.,
|k(x)| — 0 for |z| — 0)

Note that: Formula known as
@ Universal formula
@ Sontag’s formula
(Derived by Eduardo Sontag)

22/37



9. Control Lyapunov Functions (Backstepping)

Systems in strict feedback form:

&1 = fi1(z1,22)
&g = fo(w1,x2,23)

En—1 = fa-1(z1,22,..

&n = fn(z1,22,..

P. Braun (ANU)

. ,:anl,:tn)
T, U).
I3 xs3 T2 T2 1 1
I3 > f2 f1

ft
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10. Sliding Mode Control (Finite-Time Stability)

Consider
&= f(z), x(0)=w=z0€R", (f(0) =0)

Definition (Finite-time stability)

The origin is said to be (globally) finite-time stable if there
exists a function 7' : R™\{0} — (0, c0), called the
settling-time function, such that the following statements
hold:

@ (Stability) For every € > 0 there exists a § > 0 such
that, for every z(0) = xo € Bs\{0}, z(t) € B. for all
t €10, T(z0)).

@ (Finite-time convergence) For every
z(0) = zo € R™"\{0}, =(-) is defined on [0, T'(z0)),
z(t) € R™\{0} for all ¢ € [0, T'(z0)), and z(t) — O for
t— T(m())

P. Braun (ANU A Run Through Nonlinear Control Topics 24/37
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10. Sliding Mode Control (Finite-Time Stability)

Consider

& =f(z), =(0)==z0€R"  (f(0)=0)

Definition (Finite-time stability)

The origin is said to be (globally) finite-time stable if there
exists a function 7' : R™\{0} — (0, c0), called the
settling-time function, such that the following statements
hold:

@ (Stability) For every € > 0 there exists a § > 0 such
that, for every z(0) = xo € Bs\{0}, z(t) € B. for all
t €10, T(z0)).

@ (Finite-time convergence) For every
z(0) = zo € R™"\{0}, =(-) is defined on [0, T'(z0)),
z(t) € R™\{0} for all ¢ € [0, T'(z0)), and z(t) — O for
t— T(z‘())

P. Braun (ANU)

Example
Consider

i=f(x) =—Vz2,  (with £(0) =0)
Note that

@ fis not Lipschitz at the origin
@ uniqueness of solutions can only be guaranteed if
z(t) #0
We can verify that
2(t) = — 55 (t — 3sign(2(0)) ¥/]2(0)])

is a solution for all z € R.
However, for z(0) > 0

2(t) :{ — & (t=3YRO)D? it <3Y[()]
0 if t > 33/]z(0)]

is also a solution.

A Run Through Nonlinear Control Topics
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10. Sliding Mode Control (Finite-Time Stability)

1

05 Example

Consider

@=f(z)=—Vx2, (with £(0) = 0)

z(t)

05 Note that
@ fis not Lipschitz at the origin
" 2 4 6 @ uniqueness of solutions can only be guaranteed if
. L z(t) =0
We can verify that
05 7)) = —2—17(15 — 3sign(z(0)) ¥/]z(0)])3

is a solution for all z € R.

% 0 However, for z(0) > 0
05 oty = { 2 E=3YROD® it <3y
' 0 it t > 33/]2(0)]
4 is also a solution.
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10. Sliding Mode Control (Finite-Time Stability)

2
Example s
Consider =, T T
& = f(zx) = —sign(z) V2. " ///’//
We can verify ! /
a(t) = {—2% sign(z(0))(t = 3/[2(O))?  itt <3Y/1z(0)] divd
0 it t > 3%/|z(0)] 0 1 2 3 4 5
~» The ODE admits unique solutions 6 t
Once the equilibrium is reached, the inequalities
5
— sign(z) Va2 < O forallz >0, and
4
— sign(z) Va2 > 0 forall z < 0 =
~— 3
ensure that the origin is attractive. &
It follows from the explicit solution that 2 \ /
@ The origin is finite-time stable 1 i
@ Settling time T'(z) = 3 {/|x| 0
y -5 0 5
X

P. Braun (ANU A Run Through Nonlinear Control Topics 26/37
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10. Sliding Mode Control (Finite-Time Stability)

Theorem (Lyapunov fcn for finite-time stability)

Consider z = f(zx) with f(0) = 0. Assume there exist a
continuous function V : R™ — R~q, which is continuously
differentiable on R"\{0}, a1, a2 € Koo and a constant

x > 0 such that

ai(jz]) < V(z) < az(lz)),
V() = (VV(2), f(z)) < —k/V(z) Vo #0.

Then the origin is globally finite-time stable.
Moreover, the settling-time T'(x) : R™ — R>q is upper
bounded by

T(z) < 2+/az(|z).

P. Braun (ANU) A Run Through Nonlinear Control Topics
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10. Sliding Mode Control (Example)

As an example, consider:
&=z + 2,
z=u+6(tz,z2).
@ Unknown disturbance § : R>¢ x R? — R
@ Assumption: there exists Ls € R~ such that
|6(t,z,2)| < Ls (t,z,z) € Rxg x R?

@ Thus, ¢ is bounded but not necessarily continuous

P. Braun (ANU) A Run Through Nonlinear Control Topics 28/37



10. Sliding Mode Control (Example)

As an example, consider:
& =23+ z,
Z=u+0d(t x,z).
@ Unknown disturbance § : R>¢ x R? — R
@ Assumption: there exists Ls € R~ such that
16(t,,2)]| < Ls  (t,7,2) € Ryg x R?
@ Thus, ¢ is bounded but not necessarily continuous

Goal: Exponential stability of the z-subsystem

@ l.e., we want z to behave as © = —z (for all bounded
disturbances)

@ The desired behavior implies z + x = 0
@ Thus
22 +z4+2=0
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10. Sliding Mode Control (Example)

@ Then
V(o) =06 =0 (3¢ + £ + &)
= a(3x5 + 322z +u+6(t,x, 2) + 23 +2z).

As an example, consider:
& =23+ z,
Z=u+0d(t x,z).
@ Unknown disturbance § : R>¢ x R? — R
@ Assumption: there exists Ls € R~ such that
|6(t,z,2)| < Ls  (t,x,2) € Rxg x R?
@ Thus, ¢ is bounded but not necessarily continuous

Goal: Exponential stability of the z-subsystem

@ l.e., we want z to behave as © = —z (for all bounded
disturbances)

@ The desired behavior implies z +x =0
@ Thus
22 +z4+2=0
Approach: Define a new state

oc=z%+z42 and V(U):%a’
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10. Sliding Mode Control (Example)

As an example, consider:
& =23+ z,
Z=u+0d(t x,z).
@ Unknown disturbance § : R>¢ x R? — R
@ Assumption: there exists Ls € R~ such that
|6(t7 z, Z)‘ < L6 (t,(E,Z’) GRZO XR2
@ Thus, ¢ is bounded but not necessarily continuous

Goal: Exponential stability of the z-subsystem

@ l.e., we want z to behave as © = —z (for all bounded
disturbances)

@ The desired behavior implies z +x =0
@ Thus

2 +z+z=0
Approach: Define a new state
oc=z+z4+2 and V(o) = %0'2

Then
Ve)=c6=0 (39:21' + 2+ i)
= a(3x5 + 322z +u+6(t,x, 2) + 23 +2z).
To cancel the known terms define
wu=v—32% 322z —2% -2
sothat V(o) =0 (v+d(t,x,z)) (with new input v)
Selecting v = —p sign(o), p > 0, provides the estimate
V(o) = o (—p sign(o) + 6(t, z, 2)) = —plo| + 0é(t, x, 2)
< —plo| + Lslo| = —(p — Ls)|o|.
Finally, with p = L5 + % x> 0, we have

K|O

V(o) < — = —a/V (o) ~ finite-time stab. of ¢ = 0

S

P. Braun (ANU)
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10. Sliding Mode Control (Example)

As an example, consider:
& =23+ z,
Z=u+0d(t x,z).
@ Unknown disturbance § : R>¢ x R? — R
@ Assumption: there exists Ls € R~ such that
|6(t7 z, Z)‘ < L6 (t,(E,Z’) GRZO XR2
@ Thus, ¢ is bounded but not necessarily continuous

Goal: Exponential stability of the z-subsystem

@ l.e., we want z to behave as © = —z (for all bounded
disturbances)

@ The desired behavior implies z +x =0
@ Thus

2 +z+z=0
Approach: Define a new state
oc=z+z4+2 and V(o) = %0'2

Then
V(e)=o06=0 (322 + 2 + )
= a(3x5 + 322z +u+6(t,x, 2) + 23 +2z).
To cancel the known terms define
wu=v—32% 322z —2% -2
sothat V(o) =0 (v+d(t,x,z)) (with new input v)
Selecting v = —p sign(o), p > 0, provides the estimate
V(o) = o (—p sign(o) + 6(t, z, 2)) = —plo| + 0é(t, x, 2)
< —plo| + Lslo| = —(p — Ls)|o|.
Finally, with p = L5 + % x> 0, we have

V(o) < —% = —a/V (o) ~ finite-time stab. of ¢ = 0
Note that the control

u=— (L(; + %) sign (z3+z+a:)—3a:5—3:v2z—z3—z

is independent of the term (¢, z, z).

P. Braun (ANU)
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10. Sliding Mode Control (Example)

Consider:
&=+ 2,
Z=u+6(tz,z).
Control law:

u=— (L(; + %) sign (:r3+z+x) —32° 32222 -2

Parameter selection for the simulations:
@ Ls=1landk =2
@ 0(t,z, z) = sin(t) (top)
@ 0(t,z, z) = sign(cos(2t) sin(2t)) (bottom)
We observe that
@ o converges to zero in finite-time
@ Afterwards (z, z) asymptotically approach the origin

@ Since the ordinary differential equation is solved
numerically, o is not exactly zero!
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10. Sliding Mode Control (Example)

5,
N e o=0
Consider: [ —(=(t), 2(t))
&=+ 2,
Z=u+(tzz2). w0 e

Control law:

u=— (L5 + %) sign (2% +2+x) —32® —3z22 2% —2 \'\\
Parameter selection for the simulations: S 0 1 '

@ Ls=landk =2 0.75 :

@ §(t,x,z) =sin(t) (top) T Z’ (:t)o )

™ —(z(), 2

® §(t,x,z) = sign(cos(2t) sin(2t)) (bottom) o7
We observe that 0.65

@ o converges to zero in finite-time ®

0.6 S
@ Afterwards (z, z) asymptotically approach the origin R
@ Since the ordinary differential equation is solved 0.55 M\“\
numerically, o is not exactly zero!
0355 -0.5 -0.45
T

P. Braun (ANU)
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11. Adaptive Control (Motivations and Examples)

Consider parameter-dependent systems:
z = f(z,u,0), (0 € R? constant but unknown)
Goal: Stabilization of the origin.
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11. Adaptive Control (Motivations and Examples)

Consider parameter-dependent systems:
z = f(z,u,0), (0 € R? constant but unknown)

Goal: Stabilization of the origin.
Simple motivating example:

T =0x+u
@ Linear controller: For uw = —kx it holds that
z=—(k—0)x

i.e., asymptotic stability for (k — ) > 0 and instability
for (k —6) < 0.

@ What if a bound on |6] is not known?
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11. Adaptive Control (Motivations and Examples)

Consider parameter-dependent systems: It can be shown that

&= f(z,u,0), (0 € R constant but unknown)

Goal: Stabilization of the origin.
Simple motivating example:

T =060x+u

@ Linear controller: For u = —kz it holds that
z=—(k—0)x
i.e., asymptotic stability for (k — ) > 0 and instability
for (k —6) < 0.
@ What if a bound on |6] is not known?
@ Nonlinear controller: u = —kjx — ko3, k1, k2 € Rxq,
i=(0—ki)z —koz® = [(6 — k1) — k22®] 2. (3)
» For 6 < k1, (3) exhibits a unique equilibrium

z¢ =0inR
» For 6 > k1, (3) exhibits three equilibria

¢ € {0, 4,/ 45}

a(t) = 59 = {= R | Jal < /10l }

P. Braun (ANU) A Run Through Nonlinear Control Topics
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11. Adaptive Control (Motivations and Examples)

Consider parameter-dependent systems:
‘/'t = f(x7 u7 6)1

Goal: Stabilization of the origin.
Simple motivating example:

(0 € R? constant but unknown)

T =060x+u
@ Linear controller: For u = —kz it holds that
z=—(k—0)x
i.e., asymptotic stability for (k — ) > 0 and instability
for (k —6) < 0.
@ What if a bound on |6] is not known?
@ Nonlinear controller: u = —kjx — ko3, k1, k2 € Rxq,
i=(0—ki)z —koz® = [(6 — k1) — k22®] 2. (3)
» For 6 < k1, (3) exhibits a unique equilibrium
z¢ =0inR
» For 6 > k1, (3) exhibits three equilibria

¢ € {0, 4,/ 45}

P. Braun (ANU)

~ It can be shown that

x(t)ﬁSg:{weRMz\S\/gW}

@ Dynamic controller: u = —kyz — £z, £ = x2
z | | Oz —kix—&x
I z? ’

@ In terms of error dynamics: 6 = £ — 6

+

@ Lyapunov function V (z, 0) = 122 + 162;

xT

_|: —éz—kla::|
= | —==1,

V(x,0) = (—(& — 0)z — kiz)x + (€ — 0)a® = —k1z?

~ z(t) = 0fort - co V(0) € R, £(0) €R

(LaSalle-Yoshizawa theorem)
@ £(t) — 6 for t — oo is not guaranteed
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11. Adaptive Control (Model Reference Adaptive Control)

@ Consider linear systems
© = Ax + Bu
with unknown matrices A, B.

@ Goal: Design a controller so that the unknown system
behaves like

% = AZ + Bu®

where A € R"*™ and B € R**™ are design
parameters and u© € R™ is a constant reference.
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11. Adaptive Control (Model Reference Adaptive Control)

@ Consider linear systems @ Closed-loop dynamics:
& = Az + Bu & = Az + B(M(0)u® + L(0)z)
with unknown matrices A, B. = (A+ BL(9))x + BM(0)u®
@ Goal: Design a controller so that the unknown system = Aa(8)z + Ba(0)u®
behaves like where
= Az + But Aq(0) = A+ BL(O),  Ba(6) = BM(0)

where A € R"*™ and B € R**™ are design

. o ibili iti
parameters and u© € R™ is a constant reference. Compatibility conditions

@ For A Hurwitz, v defines the asymptotically stable Aa(0) = A A BL(9) = - A,

equilibrium Bq(0) = B — BM(9) = B.

@ Overall system dynamics

@ Control law: & (A+ BL(9))x + BM(6)u®
u= M(0)u®+ L(0)z, T | = Az + Bu®
0 W(x, T, u)
parameter dependent matrices M (-), L(-), to be
designed for ¥ defined appropriately
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11. Adaptive Control (Adaptive Backstepping)

Systems in parametric strict-feedback form:

i1 =z + ¢1(x1)70

&2 = a3 + ¢o(x1,22)T0

En—1=Tn + n-1(z1,...,2n—1)T0
En = B(x)u + d)n(x)TH
where B(z) # 0 for allz € R™

P. Braun (ANU)

Theorem
Letc; > 0 fori € {1,...,n}. Consider the adaptive controller

u = giyan(z,91,...,9n)
9 =T (#i(a1,.,20) - Tidh it dy(on, . o3)) 2, i=1,00m,

where ¥, € R? are multiple estimates of 6, I > 0 is the adaptation gain
matrix, and the variables z; and the stabilizing functions

a; = ai(T1,. .., @i, 01, ..., 04), a; R7THT L R i=1,...,n,

are defined by the following recursive expressions (and zop = 0, ag = 0 for
notational convenience)

zi =T — i1 (21, .., @i, 01, ..., 9)
1 8a
ai:*Cizi*Zi71*(¢z* l_ =1 J) s
i—1 ((Oai—1 LT j—1 9aj_1
+ X (a; i1 + 2 r(¢j_ 121 %5t k) ;) -

This adaptive controller guarantees global boundedness of z(-), 91 (-),
. On(-), and z1(t) — 0, x;(t) — x§ fori = 2,...,n fort — co where

ar .
xi =—0"¢;—1(0,25,...,25_4), 1=2,...,n.

V.
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12. Optimal Control (Definitions)

We consider continuous time system
o(t) = f(@(8),u(t)), =(0)==z0€R" (4)

By assumption

@ f:R™ x R™ — R" locally Lipschitz continuous
Set of inputs and set of solutions:

U= {u(-) : R>g = R™| u(-) measurable}

X ={z(): ]R;O — R™| z(+) is absolutely continuous}
We say that

@ (z(-),u(-)) € X x Uis a solution pair if it satisfies (4)
for aimost all t € R>.

Note that:

@ If the initial condition is important (or not clear from
context), we use z(-;zo) € Xand u(-;x9) € U

@ x0, and u(-) are sufficient to describe z(-)

For (z(-),u(:)) € X x U we define

@ Cost functional (or performance criterion)
J:R" xU— RU{+oo} as

oo
Jao,u()) = [ a(r) ulr)dr.
0
@ Running cost. £ : R™ x R™ — R
@ (Optimal) Value function: V' : R™ — R,
\% = min J(zo,u(-
(v0) = min J(wo,u()
subject to (4).
(We assume that the minimum exists!)
@ Optimal input:
*() — . J , .
w'() =arg min J(wo,u()

subject to (4).

P. Braun (ANU)
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12. Optimal Control (Linear Quadratic Regulator)

Linear system:
z(t) = Az(t) + Bu(¢),
Quadratic cost function:

J(zo,u(-)) = / (wT(‘r)Qx(T) +uT

z(0) = z9 € R™

(T)RU(T)) dr

Theorem

Let@ > 0, R > 0. If there exists P > 0 satisfying the
continuous time algebraic Riccati equation

ATP+PA+Q—-PBR'BTP=0
and if A— BR—YBT P is a Hurwitz matrix, then
w(x) = —R™ BT Py

minimizes the quadratic cost function and the optimal value
function is given by

V(zo) = $§P.’l‘0.

P. Braun (ANU)

Linear system
z(k + 1) = Az(k) + Bu(k),
Quadratic cost function:

ZO7 E

k=0

z(0) = z9 € R™

)T Q(k) + u(k)” Ru(k)

Theorem

Let@ > 0, R > 0. If there exists P > 0 satisfying the
discrete time algebraic Riccati equation

-1
Q+ATPA—P— ATPB (R+ BTPB) BTPA=0
and if A— B(R+ BT PB)~'BT PA is a Schur matrix, then

w(x) = —(R+ BTPB) !BTPAx

minimizes the quadratic cost function and the optimal value
function is given by

V(zo) = x& Pxo.
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13. Model Predictive Control (Receding Horizon Principle)

Past Future
Closed-loop: trajectory z(k)
— | Predicted state trajectory
4 Refefence
trajectory
Feedback Predicted
inplt trajéctory
k k+ N

Prediction horizon N

Here, we consider discrete time systems
T = f(z,u), z(0) =29 € R™
with £ : R™ x R™ — R™ £(0,0) = 0.
@ State constraints x € X C R"
@ Input constraints u € U(z) C R™

P. Braun (ANU) A Run Through Nonlinear Control Topics

MPC is also known as
@ predictive control
@ receding horizon control
@ rolling horizon control
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13. Model Predictive Control (The Basic MPC Formulation)

@ Prediction horizon: N € NU {co}

@ Set of feasible input trajectories of length N (depending on z¢):

z(0)
z(k+1)
(z(k), u(k))

U;VO = ’LLN() : N[O,N—l] — R™

<m | |l

@ For clarity, note that

Zo,

f(@(k), u(k))
X x U(x)
k€ Npg, N1

un(520) = un(-) = [un(0),un(1),u(2),...,un(N —1)]

P. Braun (ANU) A Run Through Nonlinear Control Topics
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13. Model Predictive Control (The Basic MPC Formulation)

@ Prediction horizon: N € NU {co}
@ Set of feasible input trajectories of length N (depending on z¢):

z(0) = o,
Uzo = qun(): Nov—y = R (a:(lc)(,u(k)g € X(X(U)(:r)( )
V k (S N[O,N—l]

@ For clarity, note that
un(520) = un () = [un (0),un (1), w(2),...,un(N = 1)]
@ Cost function: Jy : R™ x UY — RU {oc},
In (o, un () = ilg" €a(d), u(@))
(with running costs £ : R™ x R™ — R)
@ Terminal cost F' : R™ — R and terminal constraints Xp C R™

P. Braun (ANU) A Run Through Nonlinear Control Topics
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13. Model Predictive Control (The Basic MPC Formulation)

@ Prediction horizon: N € NU {co}
@ Set of feasible input trajectories of length N (depending on z¢):

z(0) = o,
Uzo = qun(): Nov—y = R (a:(lc)(,u(k)g € X(X(U)(:r)( )
V k (S N[O,N—l]

@ For clarity, note that
un(520) = un () = [un (0),un (1), w(2),...,un(N = 1)]
@ Cost function: Jy : R™ x UY — RU {oc},
In(@o,un () = Silo! £ (i), u(d))
(with running costs £ : R™ x R™ — R)
@ Terminal cost F' : R™ — R and terminal constraints X C R™
@ Optimal control problem

Vi (zo0) = oy in JIN(zo,un () + F(z(N))

subject to dyn. & init. cond. and z(N) € Xp

(~ finite dimensional optimization problem if N is finite)
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13. Model Predictive Control (The Basic MPC Formulation)

@ Prediction horizon: N € NU {co}
@ Set of feasible input trajectories of length N (depending on z¢):

z(0) = o,
Uzo = qun(): Nov—y = R (a:(lc)(,u(k)g € X(X(U)(x)( )
V k (S N[O,N—l]

@ For clarity, note that
un(520) = un () = [un (0),un (1), w(2),...,un(N = 1)]
@ Cost function: Jy : R™ x UY — RU {oc},
In(@o,un () = Silo! £ (i), u(d))
(with running costs ¢ : R™ x R™ — R)
@ Terminal cost F' : R™ — R and terminal constraints X C R™
@ Optimal control problem

Vi (zo0) = oy in JIN(zo,un () + F(z(N))

subject to dyn. & init. cond. and z(N) € Xp
(~ finite dimensional optimization problem if N is finite)

P. Braun (ANU) A Run Through Nonlinear Control Topics

Evenif Viy : R™ — R U {oo} is not
known explicitly, for a given

zo € R™, the function Vjy (-) can be
evaluated in zg by solving the OCP.

Optimal open-loop input trajectory
uX (-z0) € UY st a(N) € Xp &

Vi (z0)=Jn (o, uly (+;20) HF (x(N))

u}y (s zo) is used to iteratively define
a feedback law pup, i.e.,

mn (zo) = uly (05 20)
Tuy (k+1)=Ff(zuy (k), pn (2(k))
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13. Model Predictive Control (Example)

Consider z+ = Ax + Bu with unstable origin and

6 6 1 ~ 0

A= { ? R ] and B = { 1 ] =
2 5 2 2
@ Prediction horizon: N =5 4

@ The running cost: £(z,u) = 7z + 5u?

@ Constraints: v € U = [-2.5,2.5], € R? (i.e.,
D = R? x U)

@ Terminal cost & constraints: F(z) = 2Tz, Xp = R2.

4

Ty
o
i

S
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13. Model Predictive Control (Example)

Consider z+ = Ax + Bu with unstable origin and
] and B = { } ]
2

@ Prediction horizon: N =5
@ The running cost: £(z,u) = 7z + 5u?

@ Constraints: u € U = [-2.5,2.5], = € R? (i.e.,
D = R? x U)
@ Terminal cost & constraints: F(z) = 2Tz, Xp = R2.

ES
I
L—
|
[N
aom|o

4

Za
o
i

S
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-4 2 07777 2 4 0 10 20 30
Ty k
@ Now, use the terminal constraint Xz = {0} (which
makes F(x) superfluous)
@ Prediction horizon N = 11 (since for N < 11 the OCP
is not feasible for zo = [3 3]7)

3 Y p
h 2
2 !
i
1 T
0 !
i =l )
) !
-1
2 ;
i
3 2t
0 10 20 30
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3. Linear Systems (Controllability & Observability)

Linear system with output:

Theorem (Controllability, Kalman matrix)

Consider the linear system defined through the pair (A, B).
Definition (Controllability) e linaar systarm g%;yef;u'va'ent/y the pair (A, B)) Is

& = Az + Bu, y=Cx

The linear system (or (A, B)) is said to be controllable, if 2 ne1 _
for all z1, 22 € R™ there exists T' € R> and rank ([B AB A*B -+ A" B]) =n.
w : [0,T] — R™ such that

i
z2 = e oy -I—/ eA(T_T)Bu(T)d‘r.
0

Ability of a system to steer any initial state to a target state
through an appropriate input « : [0, 7] — R™.

P. Braun (ANU)
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3. Linear Systems (Controllability & Observability)

Linear system with output:

Theorem (Controllability, Kalman matrix)

Consider the linear system defined through the pair (A, B).

Definition (Controllability) ngtlgfa% es}lffsgifg ((J%f/ yeguivalenf/y the pair (A, B)) is

t = Ax + Bu, y=Cx

The linear system (or (A, B)) is said to be controllable, if 2 ne1 _
for all z1, 22 € R™ there exists T' € R> and rank ([B AB A*B -+ A" B]) =n.
u : [0, T] — R™ such that

Theorem (Observability)

Consider the linear system defined through the pair (A, C).
The linear system with output (or equivalently the pair
Ability of a system to steer any initial state to a target state (A, C)) is observable if and only if

through an appropriate input « : [0, 7] — R™.

T
zy = e T -I—/ A7) Bu(r)dr.
0

C
Definition (Observability) (%‘2
The linear system (or (A, C)) is said to be observable, if for rank ) =t
all z1, 2 € R™, x1 # x2 there exists T' € R~ such that ;
- CAn—1
CeATzz =4 Ce Tz,
Determines if x(0) can be uniquely determined by measu- @ (A, B) controllable if and only if (A7, BT) observable

ring y(t) = Cx(t) over a given time window ¢ € [0, T7].

@ (A, C) observable if and only if (AT, CT) controllable
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4. Frequency Domain Analysis (The transfer function)

Consider single-input single-output (SISO) linear systems:
() = Az(t) +bu(t),  y(t) = ca(t) + du(t),

P. Braun (ANU) A Run Through Nonlinear Control Topics 40/37



4. Frequency Domain Analysis (The transfer function)

Consider single-input single-output (SISO) linear systems:
z(t) = Ax(t) + bu(t), y(t) = cx(t) + du(t),
Application of the Laplace transform:
s&(s) — z(0) = Az(s) + bu(s), G(s) = cz(s) + du(s)
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4. Frequency Domain Analysis (The transfer function)

Consider single-input single-output (SISO) linear systems:
z(t) = Ax(t) + bu(t), y(t) = cx(t) + du(t),
Application of the Laplace transform:
s&(s) — z(0) = Az(s) + bu(s), G(s) = cz(s) + du(s)
Rearrange the terms (z(0) = 0):
§(s) = (c(sI — A)~'b+d) a(s)
Identify input output relationship:

G(s) = ziz; =c(sI—A) 'b+d (5)
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4. Frequency Domain Analysis (The transfer function)

Consider single-input single-output (SISO) linear systems:
z(t) = Ax(t) + bu(t), y(t) = cx(t) + du(t),
Application of the Laplace transform:
s&(s) — z(0) = Az(s) + bu(s), G(s) = cz(s) + du(s)
Rearrange the terms (z(0) = 0):
§(s) = (c(sI — A)~'b+d) a(s)
Identify input output relationship:

G(s) = zgz; =c(sI—A) 'b+d (5)

Definition (Realization)

Consider a transfer function G(s) and assume that (5) is
satisfied for (A, b, ¢, d). Then G(s) is called realizable and
the quadruple (A, b, ¢, d) is called a realization of G(s).
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4. Frequency Domain Analysis (The transfer function)

Consider single-input single-output (SISO) linear systems:
z(t) = Ax(t) + bu(t), y(t) = cx(t) + du(t),
Application of the Laplace transform:
s&(s) — z(0) = Az(s) + bu(s),
Rearrange the terms (z(0) = 0):
§(s) = (c(sI — A)~'b+d) a(s)
Identify input output relationship:

3(s) = ci(s) + da(s)

G(s) = Zgzg =c(sI —A)"lb+d ()

Definition (Realization)

Consider a transfer function G(s) and assume that (5) is
satisfied for (A, b, ¢, d). Then G(s) is called realizable and
the quadruple (A, b, ¢, d) is called a realization of G(s).

Theorem (Minimal realization)

The quadruple (A, b, ¢, d) is a minimal realization of
G(s) = c(sI — A)~'b+d ifand only if (A, b) is controllable
and (A, c) is observable.

V.

Theorem (Uncontrollable & unobs. modes)

Let (A,b,c,d) be a minimal realization of G(s) = ggzg .

Then X\ € Cis a pole of G, i.e., Q(\) = 0, ifand only if \ is
an eigenvalue of A.

Definition (BIBO stability)

The linear system is called bounded-input, bounded-output
(BIBO) stable if ||u|| 2., < ocoimplies ||y||z., < oco.

Graphical tools:
@ The Bode Plot & The Nyquist Criterion

Loo-norm: ||9| 2 [0,e) = esssup|y(7)| = inf{n € Rx¢ : |¢(¢)| < nforalmostall 7 € [0,¢)}

€[0,t
P. Braun (ANU)
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6. Absolute Stability (The Lur’e Problem)

Consider the feedback interconnection:

—»

= Az + bu
y=czw

Lur’e problem:

@ Which conditions on the functions ¢ : R>o x R — R

guarantee asymptotic stability of the origin?

Note that:

@ The nonlinearity can be time-dependent

@ We assume that the reference signal v(t) is zero.

@ While we focus on the SISO case, many results can
be extended to the MIMO case.

P. Braun (ANU)
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6. Absolute Stability (The Lur’e Problem)

Consider the feedback interconnection:

Definition (Sector condition)

— | *= Az + bu Leto, B € R, a < 3, and Q C R. A nonlinearity
y=cx ¥ : R>o x R — R satisfies a sector condition if
ay® <yi(t,y) < By’
for all t > 0 and for all y € Q. For Q2 = R we say that the
sector condition is satisfied globally.
u = 7w(tvy) —— ¢(t7 y) £
Lur’e problem: /8%/"
@ Which conditions on the functions ¢ : R>o x R — R ,,»’ny
guarantee asymptotic stability of the origin? g
Note that: P Y
@ The nonlinearity can be time-dependent A /'
@ We assume that the reference signal v(t) is zero. [
@ While we focus on the SISO case, many results can y
be extended to the MIMO case. ’

P. Braun

(ANU)
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6. Absolute Stability (Sector Condition)

Common nonlinearities: sign : R — R, o -
Definition (Sector condition)

-1, fory < -1,
sat(y) = y, for —1<y<1, Leta, 8 € R, a < B, and Q C R. A nonlinearity
1, fory>1. ¥ : R>p x R — R satisfies a sector condition if
y+1, fory <1, ay® <yy(t,y) < By?
dz(y) = 0, for —1<y<1,
_ for all t > 0 and for all y € Q. For Q2 = R we say that the
y—1, fory>1 hega g
sector condition is satisfied globally.
-1, fory <O,
sign(y) = 0, fory=0, : p
1, fory >0, v(ty) 4
By 4
‘ ‘ //' ””’Z)éy
7 7
Question: )
@ Which nonlinearity satisfies a sector condition? ’

P. Braun (ANU A Run Through Nonlinear Control Topics 42/37
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6. Absolute Stability (Definition & Conjectures)

Definition (Sector condition)

Leta,B € R, a < B, and © C R. A nonlinearity
¥ : R>g X R — R satisfies a sector condition if

oy® < y(t,y) < By?

forall t > 0 and for all y € Q. For 2 = R we say that the
sector condition is satisfied globally.

Definition (Absolute stability)
Leta,B € R, a < B, and Q C R. The Lur’e system
&= Az — by(t,y)

is called absolutely stable (with respect to «, 5, Q) if the
origin is asymptotically stable for all 1) : R~g x R — R
satisfying the sector condition for all t > 0 and for all

Yo € 2.

P. Braun (ANU) A Run Through Nonlinear Control Topics
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6. Absolute Stability (Definition & Conjectures)

Definition (Sector condition)

Leta,B € R, a < B, and © C R. A nonlinearity

¥ : R>g X R — R satisfies a sector condition if
ay® < yy(t,y) < By

forall t > 0 and for all y € Q. For 2 = R we say that the
sector condition is satisfied globally.

Definition (Absolute stability)
Leta,B € R, a < B, and Q C R. The Lur’e system
&= Az — by(t,y)

is called absolutely stable (with respect to «, 5, Q) if the
origin is asymptotically stable for all 1) : R~g x R — R
satisfying the sector condition for all ¢ > 0 and for all

Yo € 2.

P. Braun (ANU)

Conjecture (Aizerman’s Conjecture (1949))

Leta, B € R, a < B, and suppose the origin of the linear
system & = Ax + bu, y = cx is globally asymptotically
stable for all linear feedbacks

Then the origin is globally asymptotically stable for all
nonlinear feedbacks in the sector

as%ﬁﬂ, y #0.

~ Conjecture was shown to be wrong through
counterexamples.
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6. Absolute Stability (Definition & Conjectures)

Definition (Sector condition)

Leta,B € R, a < B, and © C R. A nonlinearity

¥ : R>g X R — R satisfies a sector condition if
ay® < yy(t,y) < By

forall t > 0 and for all y € Q. For 2 = R we say that the
sector condition is satisfied globally.

Definition (Absolute stability)
Leta,B € R, a < B, and Q C R. The Lur’e system
&= Az — by(t,y)

is called absolutely stable (with respect to «, 5, Q) if the
origin is asymptotically stable for all 1) : R~g x R — R
satisfying the sector condition for all ¢ > 0 and for all

Yo € 2.

P. Braun (ANU)

Conjecture (Kalman’s Conjecture (1957))

Leta, B € R, a < B, and suppose the origin of the linear
system & = Az + bu, y = cx is globally asymptotically
stable for all linear feedbacks

u=—1(y) = —ky, ke lopl

Then the origin is globally asymptotically stable for all
nonlinear feedbacks belonging to the incremental sector

a< Zy) < B

~ Conjecture was shown to be wrong through
counterexamples.
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6. Absolute Stability (Prepratation; Circle Criterion)

Definitions: (Disc in the complex plane)
@ centero : R\{0} X Ry¢g = R
@ radius r : R\{0} x Ryo =+ R
@ for a # 0 and 8 > 0 we define

Then, the disc D(-, -) is defined as
{xEC:x:—%—i—jw,weR},

D(a,B) = {zeC:|z—0o(a, )| =r(e, 8)},

{zeC:|z-0o(a,8)| =7r(c, 8)},

Note that
@ for a # 0, D(a, ) defines a disc centered around o (a, 8) with

radius r(c, 3)
@ for o = 0, D(0, B) defines a vertical line

P. Braun (ANU)

1 (1 1), T(a,ﬂ):sigg(a)

1
——D(0,1)
—D(1,2)
——D(-2,2)
05+
(:-5)
a B -
< o0
|
ifa=0<8,
if0<a< B,
ifa <0< g 05 ¢
- s ‘ ‘
1 -0.5 0 0.5
Re(z)
44737
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6. Absolute Stability (Circle Criterion)

Theorem (Circle Criterion)

Suppose (A, b, c) is a minimal realization of G(s) and
Y (t, y) satisfies the sector condition

ay® < yi(t,y) < By’
globally. Then the system is absolutely stable if:
@ o =0 < 3, the Nyquist plot is to the right of the line
Re(s) = — 3 (i.e., to the right of D(0,
Hurwitz;

@ 0 < a < 3, the Nyquist plot does not enter the disk
D(«, B), and encircles it in the counter-clockwise
direction as many times, N, as there are right-half
plane poles of G(s); or

@ o < 0 < B, the Nyquist plot lies in the interior of the
disk D(«, B), and G(s) is Hurwitz.

B)) and G(s) is

P. Braun (ANU)

Example
Consider the transfer function
G(s) = s+1 _ s'—i— 1 '
s2-254+2 (s—1+4+34)(s—1—17)
Two poles in right-half plane ~~ absolute stability (ltem 2)
0.6 | |—Nyquist plot|
—D(2.5 20)
0.4
— 0.2 \
S0 \\
E 02 [ /
0.4 \ /
-0.6
-0.5 0 0.5
Re(G(s))
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13. Model Predictive Control (Algorithm)

Input: Measurement of the initial condition z(0); prediction
horizon N € N U {oo}; running cost £ : R**t™ — R; constraints
D C R™*™; terminal cost F' : R™ — R and terminal constraints

Xp CR™.

Fork=0,1,2,...
@ Measure the current state of the system =+ = f(x, u) and
define o = z(k).

@ Solve the optimal control problem

V(o) = . I(?)iélUN In (@0, un () + F(z(N))

subject to dyn. & init. cond. and z(N) € Xp
to obtain the open-loop input u¥ (+; zo).
@ Define the feedback law
un (z(k)) = uy (0; o).

© Compute z(k + 1) = f(x(k), pn (x(k))), increment k to
k+1landgoto1.

P. Braun (ANU) A Run Through Nonlinear Control Topics
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14. Differential Geometric Methods

Consider:
&= f(z) + g(z)u
y = h(z) If  is known and B(z) # 0, then:
withz ER™, u € R,y € R, f(0) =0. @ the coordinate transformation v = «a(z) + 8(z)u leads
Goal: Compute coordinate transformation to a linear controller (in v) can be used to ensure
z=®(z), ®:R">R" y(t) =0
@ the control law
so that "
[z ] 2 u=———=(v—a(®(z)))
. _ B(®(2))
K = : in the original variables is only well-defined if
Zr—1 Zr Zr+1, - - -, 2n are well behaved.
LA a(z) + B(z)u ~~ Feedback Linearization
[ Zrt1 ] Coordinate transformation leads to
: =7(2) @ input-to-state linearization (if r = n)

,é.n @ input-to-output linearization (if r < n)

y=z

wherer € {1,...,n}and o, 8 : R* - R, v : R"* —» R*".

P. Braun (ANU) A Run Through Nonlinear Control Topics 47/37



14. Differential Geometric Methods (Relative degree and coordinate transformation)

Consider:
&= f(z) +g(z)u
y = h(z)
Lie derivative: f, g, h : R® — R
LiA(z) = (VA(®), f(z))

Repeated Lie derivatives:
L(f)h(x) = h(x)
LgLgh(x) = (VLgh(z), 9(z)),
Lh(z) = (VLY 'h(z), f(x))

Definition (Relative degree)

The system has relative degree r € N at a point z° € R" if
(i) the repeated Lie derivatives satisfy LgL’Jih(x) =0 for
all z in a neighborhood of z° and all k < » — 1; and

(i) the repeated Lie derivative satisfies
LgL ™ 'h(2°) # 0.

Remark

The relative degree of a linear system y(s) = ggs) u(s) is

defined as the difference between the degree of the
denominator and numerator.

Coordinate transformation:
@ For r = n, define

é1(x) h(z)
$a(x) Lyh(x)

z=®(z) = : = : (6)
ér () L7 h()

@ If r # n, augment (6) with additional n — r functions.

y.
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14. Differential Geometric Methods (Input-to-state & input-to-output linearization)

Consider: "
Proposition
&= f(z) +g(@)u

y = h(z)
Lie derivative: f, g, h : R® — R

Consider the system with relative degree r € N at z° € R™.

@ Ifr < n, then there exist n — r functions
Grgly---bn i R?” = R, so that &(x) = [#1,. .-, ¢n]” hasa

LiM(z) = (VA(z), f(z)) nonsingular Jacobian at z° and
Repeated Lie derivatives: Lggi(z) =0, r+1<i<n.
L(f)h(x) = h(z) @ Forr < n, the coordinate transformation satisfies
LgLyh(x) = (VLsh(z), g(x)), 21 = (Voi(x), &) = Lyh(z) + Lgh(x)u = Lyh(z) = 22
Lih(z) = (VL h(z), f(2)) 22 = (V(Lh(z)),&) = L}h(z) = 23

g1 = (V(L}*h(@)), &) = Ly~ h(z) = 2
zr = (V(L} 'h(x)), &) = L}h(z) + LeL} ' h(z)u,

and ifr < n, the remaining coordinates i € {r +1,...,n}
satisfy

2 = (Véi(z), &) = Lygi(x) + Lgpi(x)u = Lydi(z).
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14. Differential Geometric Methods (Input-to-state & input-to-output linearization)

Consider: —
] Proposition
&= f(z) + g(z)u . . . o mn
y = h(z) Consider the system with relative degree r € N at z° € R™.
) o . @ Ifr < m, then there existn — r functions
Lie derivative: f,g,h : R" — R Gril, .-, bn : R" = R, so that ®(z) = [¢1,...,¢n]T hasa
LiM(z) = (VA(z), f(z)) nonsingular Jacobian at z° and
Repeated Lie derivatives: Lg¢i(z) =0, r+1<i<n.
L(f)h(x) = h(z) @ Forr < n, the coordinate transformation satisfies
LyLsh(z) = (VLgh(z),g(z)), #1 = (V¢i(z), &) = Lyh(z) + Lgh(z)u = Lyh(z) = 22
LEh(z) = (VL h(z), f(2)) 52 = (V(Lyh(2)), &) = L2h(z) = 23

Additional remarks:
@ Lie bracket: f,g : R® — R™,
[f,9)(@) = 54 (2) f(2) — 5L (2)g(x)
~» Concept used to verify controllability of

nonlinear systems and ifr < n, the remaining coordinatesi € {r +1,...,n}
satisfy

Zr—1 = (V(L}?h(z)),3) = L} h(z) = 2r

zr = (V(L} 'h(x)), &) = L}h(z) + LeL} ' h(z)u,

@ The zero dynamics are the internal
dynamics when the output is kept at 0 by zi = (Vi(z), &) = Ly¢i(x) + Lgpi(x)u = Lypi(x).
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