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State Space Models

First order differential equations :
(or time-invariant system or autonomous system)

i(t) = £a(t) = f(@(t), f:R" SR (1)

@ A solution of (1) is an absolutely continuous function
that satisfies (1) for almost all ¢.

@ If fis (locally) Lipschitz, then there exists § > 0 so that
(1) has a unique solution over [t, to + d].

@ Short-hand notation: & = f(z)

Non-autonomous/time-varying system:
&(t) = f(t,z(t),  f:RyoxR™ = R" 2
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State Space Models

First order differential equations : Systems with external inputs f : R™ x R™ — R™:

(or time-invariant system or autonomous system) &= f(z,u), &= f(z,w),
(t) = %m(t) = f(z(t)), f:R™ —=R" (1) @ u:R" - R™, z+— u(z) < degree of freedom
(input)
@ A solution of (1) is an absolutely continuous function @ w:R—=>R™ t— w(t) <— exogenous signal
that satisfies (1) for almost all ¢. (disturbance or reference)

@ If fis (locally) Lipschitz, then there exists § > 0 sothat ~ Systems with output:
(1) has a unique solution over [t, to + d]. i = o), FiR" xR™ — R"

@ Short-hand notation: ¢ = f(x) y = h(z,u), bR x R™ — RP
Non-autonomous/time-varying system:
#(t) = f(t,2(t)),  f:RsoxR" R"  (2)

@ State:z € R™
@ Input: uw € R™
@ Output: y € RP
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State Space Models (Example: Mass-Spring System)

Fop

Mass m, restoring force of the spring Fs,, friction force F,
external driving force F', displacement y.
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State Space Models (Example: Mass-Spring System)

Fop

Mass m, restoring force of the spring Fs,, friction force F,
external driving force F', displacement y.

Newton’s second law of motion:
myj=F—Fy —Fsp=F —cy—ky (3)
@ Viscous friction: Fy = cy
@ Linear spring: Fsp = ky
@ Input: FF=u
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State Space Models (Example: Mass-Spring System)

From second order to first order dynamics:

@ Coordinate transformation
Fsp
- F z = T1 1 y — Xr1 Yy
m T2 T2 =79 &y =7
Y, @ then
: f - T1 = x2
Mass m, restoring force of the spring Fs,, friction force F, X L
external driving force F, displacement y. Bg = —w1 — Sx2+ o-u
Newton’s second law of motion: (Linear) Dynamical systems:
mij=F—F; —Fsp=F —cy—ky (3) . _ z2
&= f(w,u) = fﬁxl - Zxo+ iu

@ Viscous friction: Fy = cy
@ Linear spring: Fsp = ky
@ Input: FF=u

y = h(z,u) =1
General Question:

@ (Depending on the input u) How does the position
y(t) evolve over time?
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Equilibria and pairs of induced equilibria

Definition (Equilibrium, & = 0)
z¢ € R™ is called an equilibrium of z = f(x) or z = f(¢, z),
respectively, if

&= f(z°) =0,

&= f(t,z°) =0 Vt€Rxo.

The pair (z¢,u¢) € R™ x R™ is called an equilibrium pair of
the system & = f(z,u) if

z(t) = f(z%,u®) = 0.
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Equilibria and pairs of induced equilibria

Definition (Equilibrium, & = 0)

z¢ € R™ is called an equilibrium of ¢ = f(x) or z = f(¢, ),

respectively, if
&= f(z) =0,

&= f(t,z°) =0  Vt€Rxo.

The pair (z¢,u¢) € R™ x R™ is called an equilibrium pair of

the system & = f(z, u) if
z(t) = f(z%,u®) = 0.

@ Without loss of generality ¢ = 0 (or (¢, u¢) = 0).
@ To see this, consider coordinate transf. z = x — x°.
@ Then

42(t) = La(t) — La® = f@(t) = F(=(t) +2°).

and

fz) = f(z+2°) vyields 2= f(2)

f) = f(z* +2°) = f(z*) =0
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Equilibria and pairs of induced equilibria

Definition (Equilibrium, & = 0)

z¢ € R™ is called an equilibrium of ¢ = f(x) or z = f(¢, ),

respectively, if
&= f(z) =0,

&= f(t,z°) =0  Vt€Rxo.

The pair (z¢,u¢) € R™ x R™ is called an equilibrium pair of

the system = = f(=z,u) if
z(t) = f(z%,u®) = 0.

@ Without loss of generality ¢ = 0 (or (¢, u¢) = 0).
@ To see this, consider coordinate transf. z = x — x°.
@ Then

42(t) = La(t) — La® = f@(t) = F(=(t) +2°).

and

fz) = f(z+2°) vyields 2= f(2)

f) = f(z* +2°) = f(z*) =0

Recall the mass-spring system:
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Equilibria and pairs of induced equilibria

Definition (Equilibrium, & = 0)
z¢ € R™ is called an equilibrium of ¢ = f(x) or z = f(¢, ),
respectively, if

&= f(z°) =0,

&= f(t,z°) =0 Vt€Rxo.

The pair (z¢,u¢) € R™ x R™ is called an equilibrium pair of
the system = = f(=z,u) if

z(t) = f(z%,u®) = 0.

@ Without loss of generality ¢ = 0 (or (¢, u¢) = 0).
@ To see this, consider coordinate transf. z = = — z©.
@ Then
() = La(t) — La® = f(a(t)) = f(2(t) + ).
and
f(2) = fz+2°) 2= f(2)

where (z¢ = 0)
fz9) = f(°+2%) = f(a*) =0

yields

Recall the mass-spring system:

In the case that v = 0:

. @ The first equation implies that z2 = 0.

@ The second equation implies that z; = 0.
@ Equilibrium:z;1 =y =0,220 =9 =0.

Exercise: How do equilibrium pairs look like?
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Examples of dynamical systems: The inverted pendulum on a cart

S |E s M | F
General dynamics of a mechanical system:

— —t M(q)i + C(a,d) + K(q) = B(q)u
@ @ M(q) : inertia matrix
v L cos(6) . l (0)9,2 . @ C(q,q) : Coriolis forces
I +m —ml cos P cp + misin _ . . .
{ —ml cos(0) J + mi2 } [ i ] + { ~6 — mglsin(6) ] = { 0 } F @ K(q) : potential energy terms
@ B(q) : external forces

q= { g } , parameters, states, inputs

Exercises:
@ Rewrite the system as & = f(z, u)
@ For F = 0 compute equilibria of z = f(z, u)
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Comparison Functions (as tools in modern control theory)

Definition (Class-P, K, K, £, KL functions)

@ A continuous function p : R>¢ — R>( is said to be a
positive definite (p € P) if p(0) = 0 and
p(s) >0V s eRsp.

@ « € P is said to be of class-K (« € K) if « strictly
increasing.

@ « € K is said to be of class-Ks (o € Koo) if
lim a(s) = oco.
S§—>00

@ A continuous function ¢ : R>¢ — R is said to be of
class-L (o € L) if o is strictly decreasing and
lim o(s) = 0.
S§—00

@ A continuous function 8 : RZ ; — R is said to be of

class-KL (8 € KL) if for each fixed ¢ € Rxq,
B(-,t) € Koo and for each fixed s € R~o, B(s,) € L.

Some properties:
@ If v € Ko then ag = 041_1 € Koo
@ If a1, a2 € Koo then
a(s) = ai (a2(s)) = a1 o az(s) € Koo.

@ lfaekK,0c€ Lthenaoo € L.

5 5
—rrcP e ¢K

p(s)

5 €K 5 ¢ Kao
——tanh(s) € K, tanh(s) ¢ K
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