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State Space Models

First order differential equations :
(or time-invariant system or autonomous system)

ẋ(t) = d
dt
x(t) = f(x(t)), f : Rn → Rn (1)

A solution of (1) is an absolutely continuous function
that satisfies (1) for almost all t.

If f is (locally) Lipschitz, then there exists δ > 0 so that
(1) has a unique solution over [t0, t0 + δ].

Short-hand notation: ẋ = f(x)

Non-autonomous/time-varying system:

ẋ(t) = f(t, x(t)), f : R≥0 × Rn → Rn (2)

Systems with external inputs f : Rn × Rm → Rn:

ẋ = f(x, u), ẋ = f(x,w),

u : Rn → Rm, x 7→ u(x) ← degree of freedom
(input)

w : R→ Rm, t 7→ w(t) ← exogenous signal
(disturbance or reference)

Systems with output:

ẋ = f(x, u), f : Rn × Rm → Rn

y = h(x, u), h : Rn × Rm → Rp

State: x ∈ Rn

Input: u ∈ Rm

Output: y ∈ Rp
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State Space Models (Example: Mass-Spring System)

m F

Ff

Fsp

y

Mass m, restoring force of the spring Fsp, friction force Ff ,
external driving force F , displacement y.

Newton’s second law of motion:

mÿ = F − Ff − Fsp = F − cẏ − ky (3)

Viscous friction: Ff = cẏ

Linear spring: Fsp = ky

Input: F = u

From second order to first order dynamics:
Coordinate transformation

x =

[
x1

x2

]
x1 = y
x2 = ẏ

=⇒ ẋ1 = ẏ
ẋ2 = ÿ

then

ẋ1 = x2

ẋ2 = − k
m
x1 − c

m
x2 + 1

m
u

(Linear) Dynamical systems:

ẋ = f(x, u) =

[
x2

− k
m
x1 − c

m
x2 + 1

m
u

]
y = h(x, u) = x1

General Question:
(Depending on the input u) How does the position
y(t) evolve over time?
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Equilibria and pairs of induced equilibria

Definition (Equilibrium, ẋ = 0)

xe ∈ Rn is called an equilibrium of ẋ = f(x) or ẋ = f(t, x),
respectively, if

ẋ = f(xe) = 0,

ẋ = f(t, xe) = 0 ∀t ∈ R≥0.

The pair (xe, ue) ∈ Rn × Rm is called an equilibrium pair of
the system ẋ = f(x, u) if

ẋ(t) = f(xe, ue) = 0.

Without loss of generality xe = 0 (or (xe, ue) = 0).

To see this, consider coordinate transf. z = x− xe.

Then
d
dt
z(t) = d

dt
x(t)− d

dt
xe = f(x(t)) = f(z(t) + xe).

and

f̂(z)
.
= f(z + xe) yields ż = f̂(z)

where (ze = 0)

f̂(ze) = f(ze + xe) = f(xe) = 0

Recall the mass-spring system:

0
!
= ẋ1 = x2

0
!
= ẋ2 = − k

m
x1 − c

m
x2 + 1

m
u

In the case that u = 0:
The first equation implies that x2 = 0.

The second equation implies that x1 = 0.

Equilibrium: x1 = y = 0, x2 = ẏ = 0.
Exercise: How do equilibrium pairs look like?
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ẋ = f(xe) = 0,
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the system ẋ = f(x, u) if
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= ẋ1 = x2

0
!
= ẋ2 = − k

m
x1 − c

m
x2 + 1

m
u

In the case that u = 0:
The first equation implies that x2 = 0.

The second equation implies that x1 = 0.

Equilibrium: x1 = y = 0, x2 = ẏ = 0.
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Examples of dynamical systems: The inverted pendulum on a cart

θ
ℓ

p

m

M F

ℓp

m

M F

[
M +m −ml cos(θ)
−ml cos(θ) J +ml2

] [
p̈

θ̈

]
+

[
cṗ+ml sin(θ)θ̇2

γθ̇ −mgl sin(θ)

]
=

[
1
0

]
F

q =

[
p
θ

]
, parameters, states, inputs

Exercises:
Rewrite the system as ẋ = f(x, u)

For F = 0 compute equilibria of ẋ = f(x, u)

General dynamics of a mechanical system:

M(q)q̈ + C(q, q̇) +K(q) = B(q)u

M(q) : inertia matrix

C(q, q̇) : Coriolis forces

K(q) : potential energy terms

B(q) : external forces
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Comparison Functions (as tools in modern control theory)

Definition (Class-P,K,K∞,L,KL functions)

A continuous function ρ : R≥0 → R≥0 is said to be a
positive definite (ρ ∈ P) if ρ(0) = 0 and
ρ(s) > 0 ∀ s ∈ R>0.

α ∈ P is said to be of class-K (α ∈ K) if α strictly
increasing.

α ∈ K is said to be of class-K∞ (α ∈ K∞) if
lim

s→∞
α(s) =∞.

A continuous function σ : R≥0 → R≥0 is said to be of
class-L (σ ∈ L) if σ is strictly decreasing and
lim

s→∞
σ(s) = 0.

A continuous function β : R2
≥0 → R≥0 is said to be of

class-KL (β ∈ KL) if for each fixed t ∈ R≥0,
β(·, t) ∈ K∞ and for each fixed s ∈ R>0, β(s, ·) ∈ L.

Some properties:

If α1 ∈ K∞ then α2 = α−1
1 ∈ K∞

If α1, α2 ∈ K∞ then

α(s)
.
= α1 (α2(s)) = α1 ◦ α2(s) ∈ K∞.

If α ∈ K, σ ∈ L then α ◦ σ ∈ L.
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