(In-)Stability of Differential Inclusions

— Notions, Equivalences & Lyapunov-like Characterizations —

Philipp Braun

School of Engineering, Australian National University, Canberra, Australia

In Collaboration with:

L. Grüne: University of Bayreuth, Bayreuth, Germany

C. M. Kellett: School of Engineering, Australian National University, Canberra, Australia

Content

Mathematical Setting & Motivation

- Differential inclusions
- (In)stability characterizations for ordinary differential equations
- The Dini derivative

Strong (in)stability of differential inclusions & Lyapunov characterizations

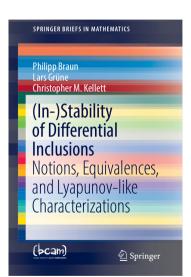
- Strong \mathcal{KL} -stability and Lyapunov functions
- $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -instability and Chetaev functions
- Relations between Chetaev functions, Lyapunov functions & scaling
- \bullet \mathcal{KL} -stability with respect to (two) measures

Weak (in)stability of differential inclusions & Lyapunov characterizations

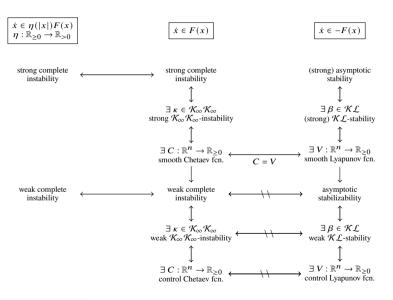
- ullet Weak \mathcal{KL} -stability and control Lyapunov functions
- \bullet Weak $\mathcal{K}_{\infty}\mathcal{K}_{\infty}\text{-instability}$ and control Chetaev functions
- Relations between control Chetaev functions, control Lyapunov functions and scaling
- Comparison to control barrier function results

Outlook & Further Topics

- Complete control Lyapunov functions
- Combined stabilizing and destabilizing controller design using hybrid systems



Overview



Notation: Comparison functions

- A continuous function $\rho : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is said to be of class $\mathcal{P} \ (\rho \in \mathcal{P})$ if $\rho(0) = 0$, and $\rho(s) > 0$ for all s > 0.
- A function $\alpha \in \mathcal{P}$ is said to be of class \mathcal{K} ($\alpha \in \mathcal{K}$) if it is strictly increasing.
- A function $\alpha \in \mathcal{K}$ is said to be of class \mathcal{K}_{∞} ($\alpha \in \mathcal{K}_{\infty}$) if $\lim_{s \to \infty} \alpha(s) = \infty$.
- A continuous function $\sigma: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is said to be of class \mathcal{L} ($\sigma \in \mathcal{L}$), if it is strictly decreasing, and $\lim_{s \to \infty} \sigma(s) = 0$.
- A continuous function $\beta: \mathbb{R}^2_{\geq 0} \to \mathbb{R}_{\geq 0}$ is said to be of class \mathcal{KL} ($\beta \in \mathcal{KL}$) if $\beta(\cdot, s) \in \mathcal{K}_{\infty}$ for all $s \in \mathbb{R}_{\geq 0}$ and $\beta(s, \cdot) \in \mathcal{L}$ for all $s \in \mathbb{R}_{\geq 0}$.

Differential inclusions

Setting:

Differential inclusion

$$\dot{x} \in F(x), \quad x_0 \in \mathbb{R}^n$$

- defined through set-valued map $F: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$
- we are interested in stability properties of the origin, i.e.,
 0 ∈ F(0) without loss of generality.

Differential inclusions

Setting:

Differential inclusion

$$\dot{x} \in F(x), \qquad x_0 \in \mathbb{R}^n$$

- defined through set-valued map $F: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$
- we are interested in stability properties of the origin, i.e., $0 \in F(0)$ without loss of generality.

Assumption (Basic conditions)

The set-valued map $F: \mathbb{R}^n \to \mathbb{R}^n$ with $0 \in F(0)$ has nonempty, compact, and convex values on \mathbb{R}^n , and it is upper semicont.

Upper semicontinuity:

- For each $x \in \mathbb{R}^n$ and for all $\varepsilon > 0$ there exists a $\delta > 0$ such that for all $\xi \in B_{\delta}(x)$ we have $F(\xi) \subset F(x) + B_{\varepsilon}(0)$.
- Example:

$$F(x) = \begin{cases} [0,1], & x = 0 \\ 1, & x \neq 0 \end{cases}$$

Assumption (Lipschitz continuity)

The set-valued map $F: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ with $0 \in F(0)$ is locally Lipschitz continuous on $\mathbb{R}^n \setminus \{0\}$.

Lipschitz continuity:

• If there exists a constant L > 0 and a neighborhood $O \subset \mathbb{R}^n$ of $x \in \mathbb{R}^n \setminus \{0\}$ such that

$$F(x_1) \subset F(x_2) + B_{L|x_1 - x_2|}(0) \quad \forall x_1, x_2 \in O$$

Differential inclusions

Setting:

Differential inclusion

$$\dot{x} \in F(x), \qquad x_0 \in \mathbb{R}^n$$

- defined through set-valued map $F: \mathbb{R}^n \Rightarrow \mathbb{R}^n$
- we are interested in stability properties of the origin, i.e.,
 0 ∈ F(0) without loss of generality.

Assumption (Basic conditions)

The set-valued map $F: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ with $0 \in F(0)$ has nonempty, compact, and convex values on \mathbb{R}^n , and it is upper semicont.

Upper semicontinuity:

- For each $x \in \mathbb{R}^n$ and for all $\varepsilon > 0$ there exists a $\delta > 0$ such that for all $\xi \in B_{\delta}(x)$ we have $F(\xi) \subset F(x) + B_{\varepsilon}(0)$.
- Example: $F(x) = \begin{cases} [0,1], & x = 0\\ 1, & x \neq 0 \end{cases}$

Assumption (Lipschitz continuity)

The set-valued map $F: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ with $0 \in F(0)$ is locally Lipschitz continuous on $\mathbb{R}^n \setminus \{0\}$.

Lipschitz continuity:

• If there exists a constant L > 0 and a neighborhood $O \subset \mathbb{R}^n$ of $x \in \mathbb{R}^n \setminus \{0\}$ such that

$$F(x_1) \subset F(x_2) + B_{L|x_1-x_2|}(0) \quad \forall x_1, x_2 \in O$$

Note that:

- Solutions of the differential inclusion:
 - Absolutely continuous functions $\phi(\cdot; x_0) : [0, T) \to \mathbb{R}^n$, $(T \in \mathbb{R}_{>0} \cup \{\infty\})$ with $\dot{\phi}(\cdot; x_0) \in F(\phi(\cdot; x_0))$ for almost all $t \in [0, T)$.
- \rightarrow Solutions exist for any initial value x_0 ∈ \mathbb{R}^n under the basic condition.
- Set of solutions (with $\phi(0; x_0) = x_0$): $S(x_0)$.
- Solutions as extended real valued functions $\phi(\cdot; x_0)$:
 - If $\phi_i(T; x_0) = \pm \infty$ for T > 0 and $i \in \{1, \dots, n\}$, then $\phi_i(t; x_0) = \pm \infty$ for all $t \ge T$.
 - If $\phi_i(T; x_0) = \pm \infty$ for T < 0 and $i \in \{1, \dots, n\}$, then $\phi_i(t; x_0) = \pm \infty$ for all $t \le T$.
- Solutions which satisfy $|\phi(t; x_0)| < \infty$ for all $t \in \mathbb{R}_{\geq 0}$ are called forward complete.

Differential inclusions (Time Scaling)

Consider

$$\dot{x} \in F(x), \quad x_0 \in \mathbb{R}^n$$

- Set of solutions $S(x_0)$
- If $\phi(\cdot; x_0) \in \mathcal{S}(x_0)$, $\phi(\cdot; x_0) : \mathbb{R} \to \mathbb{R}^n \cup \{\pm \infty\}^n$, then

$$\psi(t; x_0) = \phi(-t; x_0)$$

is a solution of (time reversed inclusion)

$$\dot{x} \in -F(x)$$
 $x_0 \in \mathbb{R}^n$

• For a positive continuous function $\eta: \mathbb{R}_{\geq 0} \to \mathbb{R}_{>0}$, consider the scaled differential inclusion

$$\dot{x} \in F_{\eta}(x) = \eta(|x|)F(x), \qquad x_0 \in \mathbb{R}^n. \tag{1}$$

with set of solutions $S_{\eta}(\cdot)$.

(Note that $\eta(0) > 0$.)

• F satisfies basic assumpt. $\iff F_{\eta}$ satisfies basic assumpt.

Differential inclusions (Time Scaling)

Consider

$$\dot{x} \in F(x), \qquad x_0 \in \mathbb{R}^n$$

- Set of solutions $S(x_0)$
- If $\phi(\cdot; x_0) \in \mathcal{S}(x_0)$, $\phi(\cdot; x_0) : \mathbb{R} \to \mathbb{R}^n \cup \{\pm \infty\}^n$, then

$$\psi(t; x_0) = \phi(-t; x_0)$$

is a solution of (time reversed inclusion)

$$\dot{x} \in -F(x)$$
 $x_0 \in \mathbb{R}^n$

• For a positive continuous function $\eta : \mathbb{R}_{\geq 0} \to \mathbb{R}_{>0}$, consider the scaled differential inclusion

$$\dot{x} \in F_{\eta}(x) = \eta(|x|)F(x), \qquad x_0 \in \mathbb{R}^n. \tag{1}$$

with set of solutions $\mathcal{S}_{\eta}(\cdot)$.

(Note that $\eta(0) > 0$.)

ullet F satisfies basic assumpt. $\Longleftrightarrow F_{\eta}$ satisfies basic assumpt.

Theorem (Positive scaling of differential inclusions)

Consider $\dot{x} \in F(x)$ satisfying the basic assumption. Consider the scaled differential inclusion (1).

For all $x_0 \in \mathbb{R}^n$ and for all $\phi(\cdot; x_0) \in \mathcal{S}(x_0)$ with

$$|\phi(t;x_0)| < \infty, \quad \forall \; t < T \quad and \quad |\phi(t;x_0)| = \infty \quad \forall \; t \geq T,$$

 $T \in \mathbb{R}_{>0} \cup \{\infty\}$, there exist a continuous strictly increasing function $\alpha : [0,T) \to [0,M)$ and $M \in \mathbb{R}_{>0} \cup \{\infty\}$ with $\alpha(0) = 0$ such that

$$\phi_{\eta}(\cdot;x_0) = \phi(\alpha(\cdot);x_0) \in \mathcal{S}_{\eta}(x_0).$$

Conversely, if $\phi_{\eta}(\cdot; x_0) \in S_{\eta}(x_0)$ then

$$\phi_{\eta}(\alpha^{-1}(\cdot);x_0) \in \mathcal{S}(x_0)$$

is satisfied. Moreover, in the limit, the solutions satisfy

$$\lim_{t\to T}|\phi(t;x_0)|=\lim_{t\to M}|\phi_\eta(t;x_0)|.$$

→ In particular, stability properties are preserved.

 \rightarrow If $T = M = \infty$ both solutions are forward complete ($\alpha \in \mathcal{K}_{\infty}$)

Differential inclusions (Time Scaling, 2)

Corollary

Consider $\dot{x} \in F(x)$ satisfying the basic assumption. Then there exists a continuous positive function $\eta : \mathbb{R}_{\geq 0} \to \mathbb{R}_{> 0}$ such that

$$\eta(|x|)F(x) \subset \overline{B}_1(0) \qquad \forall \ x \in \mathbb{R}^n$$

Moreover $\eta(|\cdot|)F(\cdot): \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ satisfies the basic assumption and all solutions of the scaled differential equation are forward complete.

In particular, we can define

$$\eta(r) = \frac{1}{\nu(r) + 1}$$

where ν is continuous and

$$\nu(r) \geq \tilde{\nu}(r) = \max_{y \in F(x), |x| = r} |y|$$

Key takeaway:

- If we want to establish asymptotic stability properties of the origin of $\dot{x} \in F(x)$ we can assume forward completeness of solutions without loss of generality by considering an appropriate scaling.
- Moreover, without loss of generality, we can assume

$$|\dot{\phi}(t;x_0)| \le 1$$
 for almost all $t \in \mathbb{R}$

Why do we care about differential inclusions?

Consider the control system

$$\dot{x} = f(x, u), \quad x_0 \in \mathbb{R}^n, \quad u \in \mathcal{U}(x) \subset \mathbb{R}^m$$

Define the set-valued map

$$F(x) = \overline{\text{conv}}\{f(x, u) \in \mathbb{R}^n | u \in \mathcal{U}(x)\}\$$

- Assume $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ is locally Lipschitz in x and continuous in u and $\mathcal{U} = \mathcal{U}(x)$ for all $x \in \mathbb{R}^n$ is compact or that $\mathcal{U}(x) = B_{c|x|}(0)$ for c > 0. Then F satisfies the basic condition and F is Lipschitz.
- Here, u can represent a disturbance or an input.

(In)stability characterizations for ordinary differential equations

We start with differential equations

$$\dot{x} = f(x), \qquad x_0 \in \mathbb{R}^n$$

- $f: \mathbb{R}^n \to \mathbb{R}^n$ locally Lipschitz
- f(0) = 0
- for each $x_0 \in \mathbb{R}^n$, $S(x_0)$ contains a single element

Definition ((Global) stability)

The origin is (Lyapunov) stable if there exists $\delta \in \mathcal{K}_{\infty}$ such that for all $\varepsilon \geq 0$,

$$|\phi(t; x_0)| \le \varepsilon$$
 whenever $|x_0| \le \delta(\varepsilon)$ and $t \ge 0$.

Theorem (Lyapunov stability theorem)

Given $\dot{x} = f(x)$, suppose there exist a smooth Lyapunov function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ and $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ such that, $\forall x \in \mathbb{R}^n$,

$$\alpha_1(|x|) \le V(x) \le \alpha_2(|x|),$$

 $\langle \nabla V(x), f(x) \rangle \le 0.$

Then the origin is (globally) stable.

(In)stability characterizations for ordinary differential equations

We start with differential equations

$$\dot{x} = f(x), \qquad x_0 \in \mathbb{R}^n$$

- $f: \mathbb{R}^n \to \mathbb{R}^n$ locally Lipschitz
- f(0) = 0
- for each $x_0 \in \mathbb{R}^n$, $S(x_0)$ contains a single element

Definition ((Global) stability)

The origin is (Lyapunov) stable if there exists $\delta \in \mathcal{K}_{\infty}$ such that for all $\varepsilon \geq 0$,

$$|\phi(t; x_0)| \le \varepsilon$$
 whenever $|x_0| \le \delta(\varepsilon)$ and $t \ge 0$.

Theorem (Lyapunov stability theorem)

Given $\dot{x} = f(x)$, suppose there exist a smooth Lyapunov function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ and $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ such that, $\forall x \in \mathbb{R}^n$,

$$\alpha_1(|x|) \le V(x) \le \alpha_2(|x|),$$

 $\langle \nabla V(x), f(x) \rangle \le 0.$

Then the origin is (globally) stable.

Definition ((Global) asymptotic stability)

The origin is asymptotically stable if it is stable and if $\forall x_0 \in \mathbb{R}^n$,

$$|\phi(t; x_0)| \to 0$$
 for $t \to \infty$.

Theorem (Lyapunov asymptotic stability theorem)

Given $\dot{x} = f(x)$ suppose there exist a smooth Lyapunov function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$, $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$, and $\rho \in \mathcal{P}$ such that, $\forall x \in \mathbb{R}^n$

$$\alpha_1(|x|) \le V(x) \le \alpha_2(|x|),$$

 $\langle \nabla V(x), f(x) \rangle \le -\rho(|x|).$

Then the origin is (globally) asymptotically stable.

(In)stability characterizations for ordinary differential equations

We start with differential equations

$$\dot{x} = f(x), \qquad x_0 \in \mathbb{R}^n$$

- $f: \mathbb{R}^n \to \mathbb{R}^n$ locally Lipschitz
- f(0) = 0
- for each $x_0 \in \mathbb{R}^n$, $S(x_0)$ contains a single element

Definition ((Global) stability)

The origin is (Lyapunov) stable if there exists $\delta \in \mathcal{K}_{\infty}$ such that for all $\varepsilon \geq 0$,

$$|\phi(t; x_0)| \le \varepsilon$$
 whenever $|x_0| \le \delta(\varepsilon)$ and $t \ge 0$.

Theorem (Lyapunov stability theorem)

Given $\dot{x} = f(x)$, suppose there exist a smooth Lyapunov function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ and $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ such that, $\forall x \in \mathbb{R}^n$,

$$\alpha_1(|x|) \le V(x) \le \alpha_2(|x|),$$

 $\langle \nabla V(x), f(x) \rangle \le 0.$

Then the origin is (globally) stable.

Definition ((Global) asymptotic stability)

The origin is asymptotically stable if it is stable and if $\forall x_0 \in \mathbb{R}^n$,

$$|\phi(t; x_0)| \to 0$$
 for $t \to \infty$.

Theorem (Lyapunov asymptotic stability theorem)

Given $\dot{x} = f(x)$ suppose there exist a smooth Lyapunov function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$, $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$, and $\rho \in \mathcal{P}$ such that, $\forall x \in \mathbb{R}^n$

$$\alpha_1(|x|) \le V(x) \le \alpha_2(|x|),$$

 $\langle \nabla V(x), f(x) \rangle \le -\rho(|x|).$

Then the origin is (globally) asymptotically stable.

Definition (Instability)

The origin is unstable for system if it is not stable.

- → There many different types of instability
- → Here, we focus on complete instability

(In)stability characterizations for ordinary differential equations (2)

We start with differential equations

$$\dot{x} = f(x), \qquad x_0 \in \mathbb{R}^n$$

• $f: \mathbb{R}^n \to \mathbb{R}^n$ locally Lipschitz, f(0) = 0

Definition ((Global) complete instability)

The origin is completely unstable if there exists $\alpha \in \mathcal{K}_{\infty}$ such that for all $\delta > 0$ the condition $x_0 \in \mathbb{R}^n \backslash B_{\alpha(\delta)}(0)$ implies

$$|\phi(t; x_0)| \ge \delta$$
 $\forall t \in \mathbb{R}_{\ge 0},$
 $|\phi(t; x_0)| \to \infty$ for $t \to \infty$.

Theorem (Lyapunov complete instability theorem)

Suppose there exist a smooth Chetaev function $C : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$, $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$, and $\rho \in \mathcal{P}$ such that, $\forall x \in \mathbb{R}^n$,

$$\alpha_1(|x|) \le C(x) \le \alpha_2(|x|),$$

 $\langle \nabla C(x), f(x) \rangle \ge \rho(|x|).$

Then the origin is (globally) completely unstable.

(In)stability characterizations for ordinary differential equations (2)

We start with differential equations

$$\dot{x} = f(x), \qquad x_0 \in \mathbb{R}^n$$

• $f: \mathbb{R}^n \to \mathbb{R}^n$ locally Lipschitz, f(0) = 0

Definition ((Global) complete instability)

The origin is completely unstable if there exists $\alpha \in \mathcal{K}_{\infty}$ such that for all $\delta > 0$ the condition $x_0 \in \mathbb{R}^n \backslash B_{\alpha(\delta)}(0)$ implies

$$|\phi(t; x_0)| \ge \delta$$
 $\forall t \in \mathbb{R}_{\ge 0},$
 $|\phi(t; x_0)| \to \infty$ for $t \to \infty$.

Theorem (Lyapunov complete instability theorem)

Suppose there exist a smooth Chetaev function $C : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$, $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$, and $\rho \in \mathcal{P}$ such that, $\forall x \in \mathbb{R}^n$,

$$\alpha_1(|x|) \le C(x) \le \alpha_2(|x|),$$

 $\langle \nabla C(x), f(x) \rangle \ge \rho(|x|).$

Then the origin is (globally) completely unstable.

Theorem (Chetaev's theorem)

Assume there exists a smooth Chetaev function $C: \mathbb{R}^n \to \mathbb{R}$ with C(0) = 0 and

$$O_r = \{x \in B_r(0) : V(x) > 0\} \neq \emptyset \qquad \forall \, r > 0.$$

If for certain r > 0,

$$\langle \nabla C(x), f(x) \rangle > 0 \quad \forall \ x \in O_r$$

then the origin is unstable.

(In)stability characterizations for ordinary differential equations (2)

We start with differential equations

$$\dot{x} = f(x), \qquad x_0 \in \mathbb{R}^n$$

• $f: \mathbb{R}^n \to \mathbb{R}^n$ locally Lipschitz, f(0) = 0

Definition ((Global) complete instability)

The origin is completely unstable if there exists $\alpha \in \mathcal{K}_{\infty}$ such that for all $\delta > 0$ the condition $x_0 \in \mathbb{R}^n \backslash B_{\alpha(\delta)}(0)$ implies

$$|\phi(t; x_0)| \ge \delta$$
 $\forall t \in \mathbb{R}_{\ge 0},$
 $|\phi(t; x_0)| \to \infty$ for $t \to \infty$.

Theorem (Lyapunov complete instability theorem)

Suppose there exist a smooth Chetaev function $C : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$, $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$, and $\rho \in \mathcal{P}$ such that, $\forall x \in \mathbb{R}^n$,

$$\alpha_1(|x|) \le C(x) \le \alpha_2(|x|),$$

 $\langle \nabla C(x), f(x) \rangle \ge \rho(|x|).$

Then the origin is (globally) completely unstable.

Theorem (Chetaev's theorem)

Assume there exists a smooth Chetaev function $C: \mathbb{R}^n \to \mathbb{R}$ with C(0) = 0 and

$$O_r = \{x \in B_r(0) : V(x) > 0\} \neq \emptyset \qquad \forall \ r > 0.$$

If for certain r > 0,

$$\langle \nabla C(x), f(x) \rangle > 0 \quad \forall \ x \in O_r$$

then the origin is unstable.

Remark

Note that, as stated, the definition and characterizations are essentially global as they are stated for all all $x \in \mathbb{R}^n$ and for all $\varepsilon > 0$. Local versions are easily obtained by restricting ε and by restricting the attention to a domain around the origin.

(In)stability characterizations for ordinary differential equations (A simple example)

Consider the three linear differential equations and their solutions

$$f_{1}(x) = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}, \qquad \phi_{1}(t; x_{0}) = \begin{bmatrix} x_{1,0}e^{t} \\ x_{2,0}e^{t} \end{bmatrix},$$

$$f_{2}(x) = \begin{bmatrix} -x_{1} \\ x_{2} \end{bmatrix}, \qquad \phi_{2}(t; x_{0}) = \begin{bmatrix} x_{1,0}e^{-t} \\ x_{2,0}e^{t} \end{bmatrix},$$

$$f_{3}(x) = \begin{bmatrix} -x_{1} \\ -x_{2} \end{bmatrix}, \qquad \phi_{3}(t; x_{0}) = \begin{bmatrix} x_{1,0}e^{-t} \\ x_{2,0}e^{-t} \end{bmatrix}.$$

• Chetaev function for complete instability: $C_1(x) = x^T x$

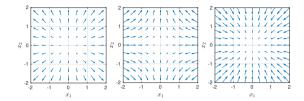
$$\langle \nabla C_1, f_1(x) \rangle = 2x^T x$$

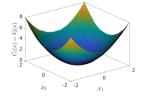
• Chetaev function for instability: $C_2(x) = -x_1^2 + x_2^2$

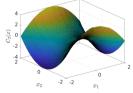
$$\langle \nabla C_2, f_2(x) \rangle = 2x^T x$$

• Lyapunov function for asymptotic stability: $V_3(x) = x^T x$

$$\langle \nabla V_3, f_3(x) \rangle = -2x^T x$$







(In)stability characterizations for ordinary differential equations (A simple example)

Consider the three linear differential equations and their solutions

$$f_{1}(x) = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}, \qquad \phi_{1}(t; x_{0}) = \begin{bmatrix} x_{1,0}e^{t} \\ x_{2,0}e^{t} \end{bmatrix},$$

$$f_{2}(x) = \begin{bmatrix} -x_{1} \\ x_{2} \end{bmatrix}, \qquad \phi_{2}(t; x_{0}) = \begin{bmatrix} x_{1,0}e^{-t} \\ x_{2,0}e^{t} \end{bmatrix},$$

$$f_{3}(x) = \begin{bmatrix} -x_{1} \\ -x_{2} \end{bmatrix}, \qquad \phi_{3}(t; x_{0}) = \begin{bmatrix} x_{1,0}e^{-t} \\ x_{2,0}e^{-t} \end{bmatrix}.$$

• Chetaev function for complete instability: $C_1(x) = x^T x$

$$\langle \nabla C_1, f_1(x) \rangle = 2x^T x$$

• Chetaev function for instability: $C_2(x) = -x_1^2 + x_2^2$

$$\langle \nabla C_2, f_2(x) \rangle = 2x^T x$$

• Lyapunov function for asymptotic stability: $V_3(x) = x^T x$

$$\langle \nabla V_3, f_3(x) \rangle = -2x^T x$$

Simple observation:

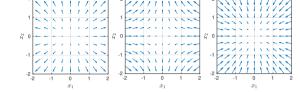
$$\dot{x} = f(x)$$
, 0 is asymptotically stable

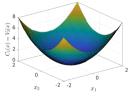
$$\langle \nabla V(x), f(x) \rangle \le -\rho(|x|)$$

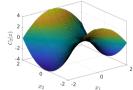
$$V=C$$

$$\dot{x} = -f(x)$$
, 0 is completely unstable

$$\langle \nabla C(x), -f(x) \rangle \ge \rho(|x|)$$







(In)stability characterizations for ordinary differential equations (Local complete instability)

Recall the definition:

Definition ((Global) complete instability)

The origin is completely unstable if there exists $\alpha \in \mathcal{K}_{\infty}$ such that for all $\delta > 0$ the condition $x_0 \in \mathbb{R}^n \setminus B_{\alpha(\delta)}(0)$ implies

$$|\phi(t; x_0)| \ge \delta \qquad \forall t \in \mathbb{R}_{\ge 0},$$
 (2)
 $|\phi(t; x_0)| \to \infty \qquad \text{for } t \to \infty.$

 \rightarrow Is the condition (2) necessary?

(In)stability characterizations for ordinary differential equations (Local complete instability)

Recall the definition:

Definition ((Global) complete instability)

The origin is completely unstable if there exists $\alpha \in \mathcal{K}_{\infty}$ such that for all $\delta > 0$ the condition $x_0 \in \mathbb{R}^n \backslash B_{\alpha(\delta)}(0)$ implies

$$|\phi(t; x_0)| \ge \delta \qquad \forall t \in \mathbb{R}_{\ge 0},$$
 (2)
 $|\phi(t; x_0)| \to \infty \qquad \text{for } t \to \infty.$

 \rightarrow Is the condition (2) necessary?

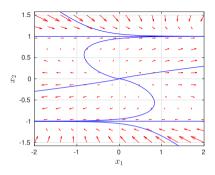
Example

Consider the two dimensional dynamics

$$\dot{x}_1 = (c^2 - x_2^2)x_1 + x_2$$
$$\dot{x}_2 = (c^2 - x_2^2)x_2$$

with parameter $c \in \mathbb{R}_{>0}$.

• For $x_2^2 = c^2$ the dynamics reduce to $\dot{x}_1 = x_2$ and $\dot{x}_2 = 0$.



(In)stability characterizations for ordinary differential equations (Local complete instability)

Recall the definition:

Definition ((Global) complete instability)

The origin is completely unstable if there exists $\alpha \in \mathcal{K}_{\infty}$ such that for all $\delta > 0$ the condition $x_0 \in \mathbb{R}^n \backslash B_{\alpha(\delta)}(0)$ implies

$$|\phi(t; x_0)| \ge \delta \qquad \forall t \in \mathbb{R}_{\ge 0},$$
 (2)
 $|\phi(t; x_0)| \to \infty \qquad \text{for } t \to \infty.$

 \rightarrow Is the condition (2) necessary?

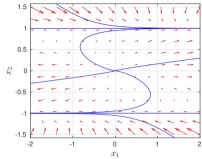
Example

Consider the two dimensional dynamics

$$\dot{x}_1 = (c^2 - x_2^2)x_1 + x_2$$
$$\dot{x}_2 = (c^2 - x_2^2)x_2$$

with parameter $c \in \mathbb{R}_{>0}$.

• For $x_2^2 = c^2$ the dynamics reduce to $\dot{x}_1 = x_2$ and $\dot{x}_2 = 0$.



Note that:

- $\alpha \in \mathcal{K}_{\infty}$ is necessary to ensure that solutions starting arbitrarily far away from 0 stay arbitrarily far away from 0 $\forall t \in \mathbb{R}_{\geq 0}$ for global complete instability.
- If we restrict our analysis of complete instability of 0 to $B_{\frac{1}{2}c}(0)$, then 0 is locally completely unstable.

→ Is the condition (2) necessary for local complete instability?

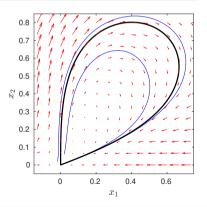
(I don't know.)

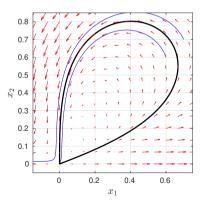
(In)stability characterizations for ordinary differential equations (Attractive but not stable)

Example (Vinograd's example)

$$\dot{x} = f(x) = \frac{1}{|x|_2^2 (1 + |x|_2^4)} \begin{bmatrix} x_1^2 (x_2 - x_1) + x_2^5 \\ x_2^2 (x_2 - 2x_1) \end{bmatrix}$$

- Classical example of a system with globally attractive origin (but not stable), i.e., the origin is not asymptotically stable.
- The origin of time reversal dynamics $\dot{x} = -f(x)$ is not completely unstable





(In)stability characterizations for ordinary differential equations (The Dini derivative)

Consider $\varphi: \mathbb{R}^n \to \mathbb{R}$

If φ is differentiable in $x \in \mathbb{R}^n$, then

The Dini derivative at x in direction $w \in \mathbb{R}^n$ are defined as:

$$D^{+}\varphi(x;w) = \limsup_{v \to w; \ t \searrow 0} \frac{1}{t} \left(\varphi(x+tv) - \varphi(x) \right),$$

$$D_+\varphi(x;w) = \lim_{v \to w: \ t \to 0} \inf_{t} \frac{1}{t} \left(\varphi(x+tv) - \varphi(x) \right),$$

$$D^{-}\varphi(x;w) = \limsup_{v \to w: t \nearrow 0} \frac{1}{t} \left(\varphi(x+tv) - \varphi(x) \right),$$

$$D_{-}\varphi(x;w) = \lim_{v \to w} \inf_{t \geq 0} \frac{1}{t} \left(\varphi(x+tv) - \varphi(x) \right).$$

(Upper right, lower right, upper left, and lower left Dini derivative)

The Dini derivatives for Lipschitz functions φ :

• The upper right Dini derivative simplifies to

$$D^+\varphi(x;w) = \limsup_{t \searrow 0} \frac{1}{t} \left(\varphi(x+tw) - \varphi(x) \right).$$

(The remaining Dini derivatives simplify in the same way.)

- The Dini derivative is finite
- The Dini derivatives can all be different

 $\langle \nabla \varphi(x), w \rangle = D^+ \varphi(x; w)$

(In)stability characterizations for ordinary differential equations (The Dini derivative)

Consider $\varphi : \mathbb{R}^n \to \mathbb{R}$

The Dini derivative at x in direction $w \in \mathbb{R}^n$ are defined as:

$$D^{+}\varphi(x;w) = \lim_{v \to w; \ t \searrow 0} \frac{1}{t} \left(\varphi(x+tv) - \varphi(x) \right),$$

$$D_{+}\varphi(x;w) = \liminf_{v \to w; \ t \to 0} \frac{1}{t} \left(\varphi(x+tv) - \varphi(x) \right),$$

$$D^{-}\varphi(x;w) = \lim_{v \to w; \ t \nearrow 0} \frac{1}{t} \left(\varphi(x+tv) - \varphi(x) \right),$$

$$D_{-}\varphi(x;w) = \liminf_{v \to w; \ t \nearrow 0} \frac{1}{t} \left(\varphi(x+tv) - \varphi(x) \right).$$

(Upper right, lower right, upper left, and lower left Dini derivative)

The Dini derivatives for Lipschitz functions φ :

• The upper right Dini derivative simplifies to

$$D^+\varphi(x;w) = \limsup_{t \searrow 0} \frac{1}{t} \left(\varphi(x+tw) - \varphi(x) \right).$$

(The remaining Dini derivatives simplify in the same way.)

- The Dini derivative is finite
- The Dini derivatives can all be different

If φ is differentiable in $x \in \mathbb{R}^n$, then

$$\langle \nabla \varphi(x), w \rangle = D^+ \varphi(x; w)$$

For $\phi(\cdot; x_0) : \mathbb{R}_{\geq 0} \to \mathbb{R}^n$ smooth and $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ smooth,

$$\dot{V}(\phi(t;x_0)) = \langle \nabla V(\phi(t;x_0)), \dot{\phi}(t;x_0) \rangle. \tag{3}$$

indicates the derivative of V along the function ϕ . If ϕ is absolutely continuous and V is Lipschitz continuous, then (3) holds for almost all $t \in \mathbb{R}$.

Strong \mathcal{KL} -stability and Lyapunov functions

Consider: $\dot{x} \in F(x), \quad x_0 \in \mathbb{R}^n$

Assume F satisfies the basic conditions

Definition (Global asymptotic stability)

The differential inclusion is uniformly globally asymptotically stable with respect to $0 \in \mathbb{R}^n$ if the following properties are satisfied. There exists a function $\delta \in \mathcal{K}_{\infty}$ such that for all $\varepsilon \geq 0$ and for all $\phi \in \mathcal{S}(x_0)$,

$$|\phi(t; x_0)| \le \varepsilon$$
 whenever $|x_0| \le \delta(\varepsilon)$ and $t \ge 0$,
 $|\phi(t; x_0)| \to 0$ for $t \to \infty$.

Definition ((Strong) \mathcal{KL} -stability)

The differential inclusion is *strongly* \mathcal{KL} -*stable* with respect to $0 \in \mathbb{R}^n$ if there exists $\beta \in \mathcal{KL}$, such that for all $x_0 \in \mathbb{R}^n$ every solution $\phi \in \mathcal{S}(x_0)$ satisfies

$$|\phi(t;x_0)| \leq \beta(|x_0|,t), \quad \forall \ t \in \mathbb{R}_{\geq 0}.$$

Strong \mathcal{KL} -stability and Lyapunov functions

Consider: $\dot{x} \in F(x)$, $x_0 \in \mathbb{R}^n$

Assume F satisfies the basic conditions

Definition (Global asymptotic stability)

The differential inclusion is uniformly globally asymptotically stable with respect to $0 \in \mathbb{R}^n$ if the following properties are satisfied. There exists a function $\delta \in \mathcal{K}_{\infty}$ such that for all $\varepsilon \geq 0$ and for all $\phi \in \mathcal{S}(x_0)$,

$$|\phi(t; x_0)| \le \varepsilon$$
 whenever $|x_0| \le \delta(\varepsilon)$ and $t \ge 0$,
 $|\phi(t; x_0)| \to 0$ for $t \to \infty$.

Definition ((Strong) \mathcal{KL} -stability)

The differential inclusion is *strongly* \mathcal{KL} -stable with respect to $0 \in \mathbb{R}^n$ if there exists $\beta \in \mathcal{KL}$, such that for all $x_0 \in \mathbb{R}^n$ every solution $\phi \in \mathcal{S}(x_0)$ satisfies

$$|\phi(t;x_0)| \leq \beta(|x_0|,t), \quad \forall \ t \in \mathbb{R}_{\geq 0}.$$

Theorem

The differential inclusion is uniformly globally asymptotically stable with respect to 0 if and only if it is (strongly) KL-stable.

Definition ((Robust) Lyapunov function)

A continuous function $V: \mathbb{R}^n \to \mathbb{R}$ is called a (robust) Lyapunov function if there exist $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ and $\rho \in \mathcal{P}$ such that

$$\alpha_1(|x|) \le V(x) \le \alpha_2(|x|) \qquad \forall x \in \mathbb{R}^n$$

$$\max_{w \in F(x)} D^+V(x; w) \le -\rho(|x|) \qquad \forall x \in \mathbb{R}^n$$

Theorem (Stability characterization)

The following are equivalent.

- The differential inclusion is strongly KL-stable with respect to the origin.
- There exists a smooth Lyapunov function

$\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -instability and Chetaev functions

Consider: $\dot{x} \in F(x)$, $x_0 \in \mathbb{R}^n$

• Assume F satisfies the basic conditions

Definition (Strong complete instability)

The differential inclusion is strongly completely unstable with respect to $0 \in \mathbb{R}^n$ if the following properties are satisfied. There exists a function $\delta \in \mathcal{K}_{\infty}$ such that for all $\varepsilon > 0$ and for all solutions $\phi \in \mathcal{S}(x_0)$,

$$|\phi(t; x_0)| \ge \varepsilon$$
 for all $t \ge 0$,
 $|\phi(t; x_0)| \to \infty$ for $t \to \infty$,

whenever $|x_0| \ge \delta(\varepsilon)$.

$\mathcal{K}_{\!\infty}\mathcal{K}_{\!\infty}\text{-instability}$ and Chetaev functions

Consider: $\dot{x} \in F(x), \quad x_0 \in \mathbb{R}^n$

• Assume F satisfies the basic conditions

Definition (Strong complete instability)

The differential inclusion is strongly completely unstable with respect to $0 \in \mathbb{R}^n$ if the following properties are satisfied. There exists a function $\delta \in \mathcal{K}_{\infty}$ such that for all $\varepsilon > 0$ and for all solutions $\phi \in \mathcal{S}(x_0)$,

$$|\phi(t; x_0)| \ge \varepsilon$$
 for all $t \ge 0$,
 $|\phi(t; x_0)| \to \infty$ for $t \to \infty$,

whenever $|x_0| \ge \delta(\varepsilon)$.

Definition ($\mathcal{K}_{\infty}\mathcal{K}$ - and $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -functions)

Consider the continuous function $\kappa: \mathbb{R}^2_{\geq 0} \to \mathbb{R}_{\geq 0}$.

- κ is said to be of class $\mathcal{K}_{\infty}\mathcal{K}$ ($\kappa \in \mathcal{K}_{\infty}\mathcal{K}$) if $\kappa(\cdot, s) \in \mathcal{K}_{\infty}$ $\forall s \in \mathbb{R}_{\geq 0}$ and $\kappa(s, \cdot) \kappa(s, 0) \in \mathcal{K}$ $\forall s \in \mathbb{R}_{> 0}$.
- κ is said to be of class $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ ($\kappa \in \mathcal{K}_{\infty}\mathcal{K}_{\infty}$) if $\kappa(\cdot,s) \in \mathcal{K}_{\infty} \ \forall \ s \in \mathbb{R}_{\geq 0}$ and $\kappa(s,\cdot) \kappa(s,0) \in \mathcal{K}_{\infty}$

Example:

- $\kappa(s,t) = ce^{\lambda t}s \in \mathcal{K}_{\infty}\mathcal{K}_{\infty} \text{ if } \lambda > 0, c > 0$
- $\kappa(s,t) = (t+1)s \in \mathcal{K}_{\infty}\mathcal{K}_{\infty}$

Definition (Strong $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -instability)

The differential inclusion is strongly $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -unstable with respect to $0 \in \mathbb{R}^n$ if there exists $\kappa \in \mathcal{K}_{\infty}\mathcal{K}_{\infty}$ such that, for all $x_0 \in \mathbb{R}^n$ every solution $\phi \in \mathcal{S}(x_0)$ satisfies

$$|\phi(t;x_0)| \ge \kappa(|x_0|,t), \quad \forall \ t \in \mathbb{R}_{\ge 0}.$$

$\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -instability and Chetaev functions

Consider: $\dot{x} \in F(x), \quad x_0 \in \mathbb{R}^n$

• Assume F satisfies the basic conditions

Definition (Strong complete instability)

The differential inclusion is strongly completely unstable with respect to $0 \in \mathbb{R}^n$ if the following properties are satisfied. There exists a function $\delta \in \mathcal{K}_{\infty}$ such that for all $\varepsilon > 0$ and for all solutions $\phi \in \mathcal{S}(x_0)$,

$$|\phi(t; x_0)| \ge \varepsilon$$
 for all $t \ge 0$,
 $|\phi(t; x_0)| \to \infty$ for $t \to \infty$,

whenever $|x_0| \ge \delta(\varepsilon)$.

Definition ($\mathcal{K}_{\infty}\mathcal{K}$ - and $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -functions)

Consider the continuous function $\kappa : \mathbb{R}^2_{\geq 0} \to \mathbb{R}_{\geq 0}$.

- κ is said to be of class $\mathcal{K}_{\infty}\mathcal{K}$ ($\kappa \in \mathcal{K}_{\infty}\mathcal{K}$) if $\kappa(\cdot, s) \in \mathcal{K}_{\infty}$ $\forall s \in \mathbb{R}_{\geq 0}$ and $\kappa(s, \cdot) - \kappa(s, 0) \in \mathcal{K}$ $\forall s \in \mathbb{R}_{> 0}$.
- κ is said to be of class $\mathcal{K}_{\infty} \mathcal{K}_{\infty}$ ($\kappa \in \mathcal{K}_{\infty} \mathcal{K}_{\infty}$) if $\kappa(\cdot, s) \in \mathcal{K}_{\infty} \ \forall \ s \in \mathbb{R}_{>0}$ and $\kappa(s, \cdot) \kappa(s, 0) \in \mathcal{K}_{\infty}$

Example:

- $\kappa(s,t) = ce^{\lambda t}s \in \mathcal{K}_{\infty}\mathcal{K}_{\infty} \text{ if } \lambda > 0, c > 0$
- $\kappa(s,t) = (t+1)s \in \mathcal{K}_{\infty}\mathcal{K}_{\infty}$

Definition (Strong $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -instability)

The differential inclusion is strongly $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -unstable with respect to $0 \in \mathbb{R}^n$ if there exists $\kappa \in \mathcal{K}_{\infty}\mathcal{K}_{\infty}$ such that, for all $x_0 \in \mathbb{R}^n$ every solution $\phi \in \mathcal{S}(x_0)$ satisfies

$$|\phi(t;x_0)| \ge \kappa(|x_0|,t), \quad \forall \ t \in \mathbb{R}_{\ge 0}.$$

Can $\kappa \in \mathcal{K}_{\infty}\mathcal{K}_{\infty}$ be replaced by $\kappa \in \mathcal{K}_{\infty}\mathcal{K}$ in the Definition?

Example (Counterexample)

Consider $\dot{x} = 0$ which has 0 as a stable equilibrium. Assume that $\kappa \in \mathcal{K}_{\infty} \mathcal{K}$ is used to define complete instability and consider

$$\kappa(r,t) = \tfrac{1}{2} r (2 - e^{-t}) \in \mathcal{K}_{\infty} \mathcal{K} \setminus \mathcal{K}_{\infty} \mathcal{K}_{\infty}.$$

For all $x_0 \in \mathbb{R}^n$ and for all $t \in \mathbb{R}_{>0}$ it holds that

$$|\phi(t;x_0)| = |x_0| \ge \frac{1}{2}|x_0|(2-e^{-t}) = \kappa(|x_0|,t)$$

$\mathcal{K}_{\!\infty}\mathcal{K}_{\!\infty}\text{-instability}$ and Chetaev functions

Consider: $\dot{x} \in F(x), \quad x_0 \in \mathbb{R}^n$

• Assume F satisfies the basic conditions

Definition (Strong complete instability)

The differential inclusion is strongly completely unstable with respect to $0 \in \mathbb{R}^n$ if the following properties are satisfied. There exists a function $\delta \in \mathcal{K}_{\infty}$ such that for all $\varepsilon > 0$ and for all solutions $\phi \in \mathcal{S}(x_0)$,

$$|\phi(t; x_0)| \ge \varepsilon$$
 for all $t \ge 0$,
 $|\phi(t; x_0)| \to \infty$ for $t \to \infty$,

whenever $|x_0| \ge \delta(\varepsilon)$.

Definition ($\mathcal{K}_{\infty}\mathcal{K}$ - and $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -functions)

Consider the continuous function $\kappa : \mathbb{R}^2_{\geq 0} \to \mathbb{R}_{\geq 0}$.

- κ is said to be of class $\mathcal{K}_{\infty}\mathcal{K}$ ($\kappa \in \mathcal{K}_{\infty}\mathcal{K}$) if $\kappa(\cdot, s) \in \mathcal{K}_{\infty}$ $\forall s \in \mathbb{R}_{\geq 0}$ and $\kappa(s, \cdot) - \kappa(s, 0) \in \mathcal{K}$ $\forall s \in \mathbb{R}_{> 0}$.
- κ is said to be of class $\mathcal{K}_{\infty} \mathcal{K}_{\infty}$ ($\kappa \in \mathcal{K}_{\infty} \mathcal{K}_{\infty}$) if $\kappa(\cdot, s) \in \mathcal{K}_{\infty} \ \forall \ s \in \mathbb{R}_{>0}$ and $\kappa(s, \cdot) \kappa(s, 0) \in \mathcal{K}_{\infty}$

Example:

- $\kappa(s,t) = ce^{\lambda t}s \in \mathcal{K}_{\infty}\mathcal{K}_{\infty} \text{ if } \lambda > 0, c > 0$
- $\kappa(s,t) = (t+1)s \in \mathcal{K}_{\infty}\mathcal{K}_{\infty}$

Definition (Strong $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -instability)

The differential inclusion is strongly $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -unstable with respect to $0 \in \mathbb{R}^n$ if there exists $\kappa \in \mathcal{K}_{\infty}\mathcal{K}_{\infty}$ such that, for all $x_0 \in \mathbb{R}^n$ every solution $\phi \in \mathcal{S}(x_0)$ satisfies

$$|\phi(t;x_0)| \ge \kappa(|x_0|,t), \quad \forall \ t \in \mathbb{R}_{\ge 0}.$$

Definition (Local Strong $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -instability)

Let $0 \in O \subset \mathbb{R}^n$ be an open neighborhood. $0 \in \mathbb{R}^n$ is locally strongly completely unstable with respect to the differential inclusion and O if there exists a $\kappa \in \mathcal{K}_{\infty}\mathcal{K}_{\infty}$ such that, for all $x_0 \in O$ every solution $\phi \in \mathcal{S}(x_0)$ satisfies

$$|\phi(t;x_0)| \ge \kappa(|x_0|,t),$$

for all $t \in \mathbb{R}_{>0}$ such that $\phi(t; x_0) \in O$.

$\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -instability and Chetaev functions (2)

Consider: $\dot{x} \in F(x)$, $x_0 \in \mathbb{R}^n$

• Assume F satisfies the basic conditions

Definition (Strong complete instability)

The differential inclusion is strongly completely unstable with respect to $0 \in \mathbb{R}^n$ if the following properties are satisfied. There exists a function $\delta \in \mathcal{K}_{\infty}$ such that for all $\varepsilon > 0$ and for all solutions $\phi \in \mathcal{S}(x_0)$,

$$|\phi(t; x_0)| \ge \varepsilon$$
 for all $t \ge 0$,
 $|\phi(t; x_0)| \to \infty$ for $t \to \infty$,

whenever $|x_0| \ge \delta(\varepsilon)$.

Definition (Strong $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -instability)

The differential inclusion is strongly $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -unstable with respect to $0 \in \mathbb{R}^n$ if there exists $\kappa \in \mathcal{K}_{\infty}\mathcal{K}_{\infty}$ such that, for all $x_0 \in \mathbb{R}^n$ every solution $\phi \in \mathcal{S}(x_0)$ satisfies

$$|\phi(t;x_0)| \ge \kappa(|x_0|,t), \quad \forall \ t \in \mathbb{R}_{\ge 0}.$$

Theorem

The differential inclusion is strongly completely unstable with respect to 0 if and only if the origin is strongly $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -unstable.

Definition ((Robust) Chetaev function)

A continuous function $C: \mathbb{R}^n \to \mathbb{R}$ is called a Chetaev function for the differential inclusion if there exist $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ and $\rho \in \mathcal{P}$ such that

$$\begin{aligned} \alpha_1(|x|) &\leq C(x) \leq \alpha_2(|x|) & \forall \ x \in \mathbb{R}^n \\ \min_{w \in F(x)} D_+ C(x; w) &\geq \rho(|x|) & \forall \ x \in \mathbb{R}^n \end{aligned}$$

Theorem (Instability characterization)

The following are equivalent.

- The differential inclusion is strongly $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -unstable.
- There exists a smooth Chetaev function.

Main steps of the construction of the Chetaev function

Consider: $\dot{x} \in F(x), \quad x_0 \in \mathbb{R}^n$

Assume F satisfies the basic conditions

Assume the origin is completely unstable.

Definition (Strong $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -instability)

The differential inclusion is strongly $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -unstable with respect to $0 \in \mathbb{R}^n$ if there exists $\kappa \in \mathcal{K}_{\infty} \mathcal{K}_{\infty}$ such that, for all $x_0 \in \mathbb{R}^n$ every solution $\phi \in \mathcal{S}(x_0)$ satisfies

$$|\phi(t;x_0)| \ge \kappa(|x_0|,t), \quad \forall \ t \in \mathbb{R}_{\ge 0}.$$

- Show that there exists $F_I: \mathbb{R}^n \to \mathbb{R}^n$ locally Lipschitz such that $F(x) \subset F_L(x) \ \forall x \in \mathbb{R}^n$ and the origin of $\dot{x} \in F_L(x)$ is strongly completely unstable.
- \rightarrow Construct a Chetaev functions for F_I

Lemma (Inverse Sontag's lemma)

For each $\kappa \in \mathcal{K}_{\infty}\mathcal{K}_{\infty}$ and $\lambda > 0$, there exist $\alpha, \gamma \in \mathcal{K}_{\infty}$ such that

$$\alpha(\kappa(r,t)) \geq e^{\lambda t} \gamma(r) \qquad \forall \, (r,t) \in \mathbb{R}^2_{\geq 0}.$$

For the construction of the Chetaey function:

• make use of the inequalities

$$\alpha_2(|\phi(t;x_0)|) \ge \alpha_2(\kappa(|x_0|,t)) \ge \alpha_1(|x_0|)e^{2t}$$

show that

$$C_1(x_0) = \inf_{t \ge 0; \ \phi \in \mathcal{S}_L(x_0)} \alpha_2(|\phi(t; x_0)|) e^{-t}$$

is well-defined, continuous on \mathbb{R}^n , locally Lipschitz continuous on $\mathbb{R}^n \setminus \{0\}$, and is a Chetaev function excluding a neighborhood around the origin

• apply smoothing techniques (convolution) to obtain a smooth Chetaev function C from C_1 .

Relations between Chetaev and Lyapunov functions & scaling

Lemma

Consider $\dot{x} \in F(x)$ satisfying the basic condition and $\dot{x} \in \eta(|x|)F(x)$ for a Lipschitz $\eta : \mathbb{R}_{\geq 0} \to \mathbb{R}_{> 0}$.

- Assume V is a smooth Lyapunov function for $\dot{x} \in F(x)$. Then V is a smooth Lyapunov function of $\dot{x} \in \eta(|x|)F(x)$.
- Assume C is a smooth Chetaev function for $\dot{x} \in F(x)$. Then C is a smooth Chetaev function of $\dot{x} \in \eta(|x|)F(x)$.

Proof.

Let V denote a smooth Lyapunov function. Then there exists $\rho \in \mathcal{P}$ such that in particular the inequality

$$\max_{w \in F(x)} \langle \nabla V(x), w \rangle \le -\rho(|x|) \qquad x \in \mathbb{R}^n.$$

$$\max_{w \in \eta(|x|)F(x)} \langle \nabla V(x), w \rangle = \max_{w \in F(x)} \langle \nabla V(x), \eta(|x|)w \rangle$$
$$\leq -\eta(|x|)\rho(|x|) = \tilde{\rho}(|x|)$$

Corollary

Consider $\dot{x} \in F(x)$ satisfying basic conditions together with $\dot{x} \in -F(x)$

- Let V be a smooth Lyapunov function for $\dot{x} \in F(x)$. Then C = V is a smooth Chetaev function for $\dot{x} \in -F(x)$.
- Let C be a smooth Chetaev function for $\dot{x} \in F(x)$. Then V = C is a smooth Lyapunov function for $\dot{x} \in -F(x)$.

Proof.

Let V denote a smooth Lyapunov function for $\dot{x} \in F(x)$. Then there exists $\rho \in \mathcal{P}$ such that

$$-\rho(|x|) \ge \max_{w \in F(x)} \langle \nabla V(x), w \rangle = -\min_{w \in F(x)} -\langle \nabla V(x), w \rangle$$

for all $x \in \mathbb{R}^n$. Equivalently

$$\rho(|x|) \ge \min_{w \in F(x)} -\langle \nabla V(x), w \rangle = \min_{w \in -F(x)} \langle \nabla V(x), w \rangle$$

17/29

i.e., C = V is a Chetaev function for $\dot{x} \in -F(x)$.

[→] Solutions are forward complete w.l.o.g.

Relations between Chetaev and Lyapunov functions & scaling (2)

Scaling of Lyapunov/Chetaev functions:

A Chetaev function satisfies:

$$\begin{aligned} \alpha_1(|x|) &\leq C(x) \leq \alpha_2(|x|) & \forall \ x \in \mathbb{R}^n \\ \min_{w \in F(x)} D_+ C(x; w) &\geq \rho(|x|) & \forall \ x \in \mathbb{R}^n \end{aligned}$$

• For $\hat{\rho} = \rho \circ \alpha_2^{-1} \in \mathcal{P}$, it holds that

$$\begin{split} \min_{w \in F(x)} D_+ C(x; w) &\geq \rho(|x|) \geq \rho(\alpha_2^{-1}(C(x))) \\ &= \hat{\rho}(C(x)). \end{split}$$

• Select $\hat{\alpha} \in \mathcal{K}_{\infty}$ continuously differentiable such that

$$\hat{\alpha}'(s) > 0$$
 and $\hat{\rho}(s)\hat{\alpha}'(s) \ge \hat{\alpha}(s)$ $\forall s \in \mathbb{R}_{>0}$,

• Note that for $\widehat{C}(x) = \widehat{\alpha}(C(x))$:

$$D_{+}\widehat{C}(x;w) = \hat{\alpha}'(C(x))D_{+}C(x;w) \qquad \forall \ w \in \mathbb{R}^{n}.$$

(chain rule with respect to the Dini derivative) and thus

$$\min_{w \in F(x)} D_+ \widehat{C}(x; w) \ge \hat{\alpha}'(C(x)) \hat{\rho}(C(x))$$

$$\geq \hat{\alpha}(C(x)) = \widehat{C}(x)$$

Relations between Chetaev and Lyapunov functions & scaling (2)

Scaling of Lyapunov/Chetaev functions:

A Chetaev function satisfies:

$$\begin{aligned} \alpha_1(|x|) &\leq C(x) \leq \alpha_2(|x|) & \forall \ x \in \mathbb{R}^n \\ \min_{w \in F(x)} D_+ C(x; w) &\geq \rho(|x|) & \forall \ x \in \mathbb{R}^n \end{aligned}$$

• For $\hat{\rho} = \rho \circ \alpha_2^{-1} \in \mathcal{P}$, it holds that

$$\begin{split} \min_{w \in F(x)} D_+ C(x; w) &\geq \rho(|x|) \geq \rho(\alpha_2^{-1}(C(x))) \\ &= \hat{\rho}(C(x)). \end{split}$$

• Select $\hat{\alpha} \in \mathcal{K}_{\infty}$ continuously differentiable such that

$$\hat{\alpha}'(s) > 0$$
 and $\hat{\rho}(s)\hat{\alpha}'(s) \ge \hat{\alpha}(s)$ $\forall s \in \mathbb{R}_{>0}$,

• Note that for $\widehat{C}(x) = \widehat{\alpha}(C(x))$:

$$D_+\widehat{C}(x;w)=\hat{\alpha}'(C(x))D_+C(x;w) \qquad \forall \ w\in\mathbb{R}^n.$$

(chain rule with respect to the Dini derivative) and thus

$$\min_{w \in F(x)} D_+ \widehat{C}(x; w) \ge \hat{\alpha}'(C(x)) \hat{\rho}(C(x))$$

 $\geq \hat{\alpha}(C(x)) = \hat{C}(x)$

P. Braun (ANU)

• As a last step define

$$\hat{\alpha}_1 = \hat{\alpha} \circ \alpha_1$$
 and $\hat{\alpha}_2 = \hat{\alpha} \circ \alpha_2$

which satisfies

$$\hat{\alpha}_1(|x|) \le \hat{C}(x) \le \hat{\alpha}_2(|x|) \quad \forall x \in \mathbb{R}^n,$$

Relations between Chetaev and Lyapunov functions & scaling (2)

Scaling of Lyapunov/Chetaev functions:

A Chetaev function satisfies:

$$\begin{aligned} \alpha_1(|x|) &\leq C(x) \leq \alpha_2(|x|) & \forall \ x \in \mathbb{R}^n \\ \min_{w \in F(x)} D_+ C(x; w) &\geq \rho(|x|) & \forall \ x \in \mathbb{R}^n \end{aligned}$$

• For $\hat{\rho} = \rho \circ \alpha_2^{-1} \in \mathcal{P}$, it holds that

$$\min_{w \in F(x)} D_+C(x; w) \ge \rho(|x|) \ge \rho(\alpha_2^{-1}(C(x)))$$
$$= \hat{\rho}(C(x)).$$

• Select $\hat{\alpha} \in \mathcal{K}_{\infty}$ continuously differentiable such that

$$\hat{\alpha}'(s) > 0$$
 and $\hat{\rho}(s)\hat{\alpha}'(s) \ge \hat{\alpha}(s)$ $\forall s \in \mathbb{R}_{>0}$,

• Note that for $\widehat{C}(x) = \widehat{\alpha}(C(x))$:

$$D_+\widehat{C}(x;w)=\hat{\alpha}'(C(x))D_+C(x;w) \qquad \forall \ w\in\mathbb{R}^n.$$

(chain rule with respect to the Dini derivative) and thus

$$\min_{w \in F(x)} D_+ \widehat{C}(x; w) \ge \hat{\alpha}'(C(x)) \hat{\rho}(C(x))$$

$$\geq \hat{\alpha}(C(x)) = \widehat{C}(x)$$

• As a last step define

$$\hat{\alpha}_1 = \hat{\alpha} \circ \alpha_1$$
 and $\hat{\alpha}_2 = \hat{\alpha} \circ \alpha_2$

which satisfies

$$\hat{\alpha}_1(|x|) \le \hat{C}(x) \le \hat{\alpha}_2(|x|) \quad \forall x \in \mathbb{R}^n,$$

In particular the conditions

$$\begin{aligned} \alpha_1(|x|) &\leq C(x) \leq \alpha_2(|x|) & \forall \ x \in \mathbb{R}^n \\ \min_{w \in F(x)} D_+ C(x; w) &\geq \rho(|x|) & \forall \ x \in \mathbb{R}^n \end{aligned}$$

are equivalent to

$$\begin{aligned} \hat{\alpha}_1(|x|) &\leq \widehat{C}(x) \leq \hat{\alpha}_2(|x|) & \forall x \in \mathbb{R}^n \\ \min_{w \in F(x)} D_+ \widehat{C}(x; w) &\geq \widehat{C}(x) & \forall x \in \mathbb{R}^n \end{aligned}$$

$\mathcal{KL}\text{-stability}$ with respect to (two) measures

- Consider two measures $\omega_1, \, \omega_2 : \mathcal{G} \to \mathbb{R}_{\geq 0}$, i.e., two positive functions from an open set $\mathcal{G} \subset \mathbb{R}^n$ to the positive real numbers.
- Then $\dot{x} \in F(x)$ is called \mathcal{KL} -stable with respect to (ω_1, ω_2) on \mathcal{G} if there exists a \mathcal{KL} -function β such that for all $x \in \mathcal{G}$,

$$\omega_1(\phi(t;x_0)) \le \beta(\omega_2(x_0),t) \qquad \forall \ t \ge 0$$
and
$$\phi(t;x_0) \in \mathcal{G} \qquad \forall \phi \in \mathcal{S}(x_0) \qquad \forall \ t \ge 0.$$

Note that:

- For $\mathcal{G} = \mathbb{R}^n$ and $\omega_1(x) = \omega_2(x) = |x|$, the definition of (string) \mathcal{KL} -stability of the origin is recovered.
- For $\mathcal{G} \subset \mathbb{R}^n \setminus \{0\}$ excluding the origin, the measures $\omega_1(x) = \omega_2(x) = \frac{1}{|x|}$ ensure certain instability properties. In particular, the bound

$$|\phi(t;x_0)| \ge \left(\beta\left(\left|\frac{1}{x_0}\right|,t\right)\right)^{-1}$$

is obtained.

$\mathcal{KL}\text{-stability}$ with respect to (two) measures

- Consider two measures $\omega_1, \omega_2 : \mathcal{G} \to \mathbb{R}_{\geq 0}$, i.e., two positive functions from an open set $\mathcal{G} \subset \mathbb{R}^n$ to the positive real numbers.
- Then $\dot{x} \in F(x)$ is called \mathcal{KL} -stable with respect to (ω_1, ω_2) on \mathcal{G} if there exists a \mathcal{KL} -function β such that for all $x \in \mathcal{G}$,

$$\begin{aligned} \omega_1(\phi(t;x_0)) &\leq \beta(\omega_2(x_0),t) & \forall \ t \geq 0 \\ \text{and} & \phi(t;x_0) \in \mathcal{G} & \forall \ \phi \in \mathcal{S}(x_0) & \forall \ t \geq 0. \end{aligned}$$

Note that:

- For $\mathcal{G} = \mathbb{R}^n$ and $\omega_1(x) = \omega_2(x) = |x|$, the definition of (string) \mathcal{KL} -stability of the origin is recovered.

$$|\phi(t;x_0)| \ge \left(\beta\left(\left|\frac{1}{x_0}\right|,t\right)\right)^{-1}$$

is obtained.

In the context of Lyapunov functions:

• A Lyapunov function characterizing \mathcal{KL} -stability with respect to (ω_1, ω_2) , needs to satisfy

$$\alpha_1(\omega_1(x)) \le V(x) \le \alpha_2(\omega_2(x)).$$

• For $\omega_1(x) = \omega_2(x) = |x|^{-1}$ this implies

$$\frac{1}{|x|} \le V(x) \le \frac{1}{|x|}$$

and for $\omega_1(x) = \omega_2(x) = |x|$ this implies

$$|x| \le V(x) \le |x|$$

- As an example
 - $V(x) = x^2$ characterizes stability of $\dot{x} = -x$
 - $V(x) = x^{-2}$ characterizes instability of $\dot{x} = x$
- \rightarrow V behaves different close to the origin

Weak (in)stability of differential inclusions & Lyapunov characterizations

Weak \mathcal{KL} -stability and control Lyapunov functions

Definition (Global asymptotic stabilizability)

 $\dot{x} \in F(x)$ is uniformly globally asymptotically stabilizable with respect to 0 if the following are satisfied. There exists a function $\delta \in \mathcal{K}_{\infty}$ such that for all $\varepsilon \geq 0$ and all $x_0 \in \mathbb{R}^n$ with $|x_0| \leq \delta(\varepsilon)$ there exists $\phi \in S(x_0)$ with

$$|\phi(t; x_0)| \le \varepsilon$$
 for all $t \ge 0$ and $|\phi(t; x_0)| \to 0$ for $t \to \infty$.

Definition (Weak KL-stability)

 $\dot{x} \in F(x)$ is weakly \mathcal{KL} -stable with respect to the equilibrium 0 if there exists $\beta \in \mathcal{KL}$ such that, for all $x_0 \in \mathbb{R}^n$ there exists $\phi \in \mathcal{S}(x_0)$ with

$$|\phi(t;x_0)| \leq \beta(|x_0|,t), \quad \forall \ t \in \mathbb{R}_{\geq 0}.$$

Corollary

Consider $\dot{x} \in F(x)$ satisfying the basic conditions. $\dot{x} \in F(x)$ is globally asymptotically stabilizable with respect to 0 if and only if it is is weakly \mathcal{KL} -stable.

Definition (Control Lyapunov function)

A continuous function $V:\mathbb{R}^n\to\mathbb{R}$ is called control Lyapunov function for $\dot{x}\in F(x)$ if there exist $\alpha_1,\,\alpha_2\in\mathcal{K}_\infty$ and $\rho\in\mathcal{P}$ and

$$\alpha_1(|x|) \le V(x) \le \alpha_2(|x|) \qquad \forall x \in \mathbb{R}^n$$

$$\min_{w \in F(x)} D_+V(x;w) \le -\rho(|x|) \qquad \forall x \in \mathbb{R}^n$$

Theorem

Suppose F satisfies the basic conditions and is Lipschitz. Then the following are equivalent.

- $\dot{x} \in F(x)$ is weakly \mathcal{KL} -stable.
- There exists a Lipschitz control Lyapunov function.

Weak $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -instability and control Chetaev functions

Definition (Weak complete instability)

 $\dot{x} \in F(x)$ is weakly completely unstable with respect to 0 if the following properties are satisfied. There exists a function $\delta \in \mathcal{K}_{\infty}$ such that for all $\varepsilon > 0$ and all $x_0 \in \mathbb{R}^n$ with $|x_0| \geq \delta(\varepsilon)$ there exists $\phi \in \mathcal{S}(x_0)$ with

$$|\phi(t; x_0)| \ge \varepsilon$$
 for all $t \ge 0$ and $|\phi(t; x_0)| \to \infty$ for $t \to \infty$.

Definition (Weak $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -instability)

 $\dot{x} \in F(x)$ is weakly $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -unstable with respect to 0 if there exists $\kappa \in \mathcal{K}_{\infty}\mathcal{K}_{\infty}$ such that, for all $x_0 \in \mathbb{R}^n$ there exists $\phi \in \mathcal{S}(x_0)$ so that

$$|\phi(t; x_0)| \ge \kappa(|x_0|, t)$$
 for all $t \ge 0$.

Corollary

Consider $\dot{x} \in F(x)$ satisfying the basic conditions. $\dot{x} \in F(x)$ is weakly completely unstable with respect to 0 if and only if it is is weakly $K_{\infty}K_{\infty}$ -unstable.

Definition (Control Chetaev function)

A continuous function $C: \mathbb{R}^n \to \mathbb{R}$ is called control Chetaev function for $\dot{x} \in F(x)$ if there exist $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ and $\rho \in \mathcal{P}$ such that

$$\alpha_1(|x|) \le C(x) \le \alpha_2(|x|) \qquad \forall x \in \mathbb{R}^n$$

$$\max_{w \in F(x)} D^+C(x; w) \ge \rho(|x|) \qquad \forall x \in \mathbb{R}^n$$

Theorem

Suppose F satisfies the basic conditions and is Lipschitz. Then the following are equivalent.

- The origin of $\dot{x} \in F(x)$ is weakly $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -unstable.
- There exists a continuous control Chetaev function.

Weak $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -instability and control Chetaev functions: Control Chetaev function

Construction of a control Chetaey function:

• For $g: \mathbb{R}^n \to \mathbb{R}$ appropriately selected and

$$\gamma_1(|x|) \le g(x) \le \gamma_2(|x|) \quad \forall x \in \mathbb{R}^n,$$

 $\gamma_1, \gamma_2 \in \mathcal{K}_{\infty}$, define

$$J(x_0, \phi) = \begin{cases} \frac{1}{\int_0^\infty \frac{1}{g(\phi(t; x_0))} dt}, & \text{if } \int_0^\infty g(\phi(t; x_0))^{-1} dt \text{ exists,} \\ 0, & \text{otherwise,} \end{cases}$$

• Show that the optimal value function

$$C(x_0) = \sup_{\phi \in S(x_0)} J(x_0, \phi) \quad \Longleftrightarrow \quad \frac{1}{C(x_0)} = \inf_{\phi \in S(x_0)} \frac{1}{J(x_0, \phi)}$$

is continuous for $x_0 \neq 0$.

• The dynamic programming principle for $C(x_0) = J(x_0, \psi), \psi \in \mathcal{S}(x_0)$:

$$\frac{1}{C(x_0)} = \int_0^T \frac{1}{g(\psi(t; x_0))} dt + \frac{1}{C(\psi(T; x_0))} \quad \text{for } T \in \mathbb{R}_{\geq 0}.$$

• Rearranging terms, dividing by T > 0 and considering the limit $T \rightarrow 0$ leads to

$$0 = \frac{1}{g(\psi(0; x_0))} - \frac{1}{C(\psi(0; x_0))^2} D^+ C(x_0; w)$$

from which the increase

$$\sup_{w \in F(x)} D^+C(x; w) \ge \frac{C(x)^2}{g(x)}$$

condition follows

 (We additionally show that there exists a continuous control Chetaev function which is Lipschitz excluding an arbitrary small neighborhood around the origin.)

When are nonsmooth control Lyapunov/Chetaev functions necessary? (Examples)

Consider the differential inclusion

$$\dot{x} \in F(x) = \overline{\text{conv}}\{f(x, u) | u \in \mathcal{U}(x)\}$$

where f(x, u) and \mathcal{U} are defined as

$$f(x,u) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u \quad \text{and} \quad \mathcal{U}(x) = [-2|x|, 2|x|].$$

Assume there exists a smooth control Chetaev function C.

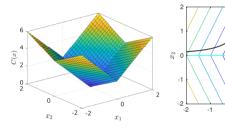
• Then, V = C is a CLF for $\dot{x} = -f(x, u)$:

$$\sup_{u \in \mathcal{U}(x)} \langle \nabla C(x), f(x, u) \rangle \ge \rho(|x|) \iff \\ \min_{u \in \mathcal{U}(x)} \langle \nabla C(x), -f(x, u) \rangle \le -\rho(|x|).$$

- The second component x₂ of -f, is not stabilizable to the origin, i.e., a smooth CLF cannot exist and thus a smooth CCF cannot exist
- However, intuitively it should be clear that the origin is weakly completely unstable

Nonsmooth control Chetaev function:

$$C(x) = 2|x_1| + |x_2|$$



Corollary

There are differential inclusions satisfying basic conditions and F locally Lipschitz which are weakly $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -unstable and which do not admit smooth control Chetaev functions.

Relations between control Chetaev functions, control Lyapunov functions, and scaling

Note that

- Results on the positive scaling $\dot{x} \in \eta(|x|)F(x)$ remain valid in the weak setting
- The connections between $\dot{x} \in F(x)$ and $\dot{x} \in -F(x)$ established in the strong setting are in general not satisfied in the weak setting

Relations between control Chetaev functions, control Lyapunov functions, and scaling

Note that

- Results on the positive scaling $\dot{x} \in \eta(|x|)F(x)$ remain valid in the weak setting
- The connections between $\dot{x} \in F(x)$ and $\dot{x} \in -F(x)$ established in the strong setting are in general not satisfied in the weak setting

In particular, let V be a control Lyapunov function for $\dot{x} \in F(x)$, i.e., for $\rho \in \mathcal{P}$ for all $x \in \mathbb{R}^n$

$$-\rho(|x|) \ge \min_{w \in F(x)} D_+ V(x; w)$$

This implies that

$$\begin{split} \rho(|x|) &\leq \max_{w \in F(x)} -D_+V(x;w) \\ &= \max_{w \in F(x)} \left(-\liminf_{v \to w; \ t \searrow 0} \frac{1}{t}(V(x+tv) - V(x)) \right) \\ &= \max_{w \in F(x)} \limsup_{v \to w; \ t \searrow 0} -\frac{1}{t}(V(x+tv) - V(x)) \\ &= \max_{w \in F(x)} \limsup_{v \to w; \ t \nearrow 0} \frac{1}{t}(V(x-tv) - V(x)) \\ &= \max_{w \in -F(x)} \limsup_{v \to w; \ t \nearrow 0} \frac{1}{t}(V(x+tw) - V(x)) \\ &= \max_{w \in -F(x)} \max_{v \to w; \ t \nearrow 0} \frac{1}{t}(V(x+tw) - V(x)) \end{split}$$

 \rightarrow The left Dini derivative cannot be used to define a CCF for $\dot{x} \in -F(x)$.

Relations between control Chetaev functions, control Lyapunov functions (Artstein's Circles)

• Consider $(u \in [-1, 1] = \mathcal{U})$

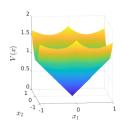
$$\dot{x}_1(t) = \left(-x_1(t)^2 + x_2(t)^2\right)u(t),$$

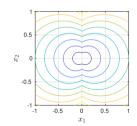
 $\dot{x}_2(t) = (-2x_1(t)x_2(t)) u(t)$

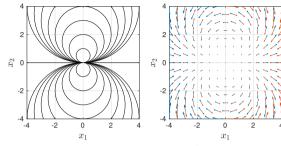
Control Lyapunov function:

(the origin is weakly \mathcal{KL} -stable)

$$V(x) = \sqrt{4x_1^2 + 3x_2^2} - |x_1|$$







- All solutions corresponding to $x_0 \in \mathbb{R}^2 \setminus (\mathbb{R} \times \{0\})$ are bounded
- \rightarrow The origin is not weakly $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -unstable.

Corollary

Weak KL-stability of the origin for $\dot{x} \in F(x)$ is not equivalent to weak $K_{\infty}K_{\infty}$ -instability of the origin for $\dot{x} \in -F(x)$.

Relations between control Chetaev functions, control Lyapunov functions (Brockett integrator)

Example

Consider the dynamics of the Brockett integrator,

$$F(x) = \overline{\text{conv}} \{ f(x, u) | u \in \mathcal{U} \}$$

defined through

$$f(x,u) = \begin{bmatrix} u_1 \\ u_2 \\ x_1u_2 - x_2u_1 \end{bmatrix}$$
 and $\mathcal{U} = [-1,1]^2$.

(Note that the dynamics in forward time are equivalent to the dynamics in backward time.)

It can be shown that

$$V(x) = x_1^2 + x_2^2 + 2x_3^2 - 2|x_3|\sqrt{x_1^2 + x_2^2}$$

is CLF but not a CCF.

• It can be shown that

$$C(x) = |x_1| + |x_2| + |x_3|$$

is a CCF but not a CLF

Comparison to control barrier function results

Consider the control affine system

$$\dot{x} = f(x) + g(x)u$$

- \bullet f, g locally Lipschitz
- $C \subset \mathbb{R}^n$ is called forward invariant if for every $x_0 \in C$,

$$\phi(t; x_0) \in C$$
, $\forall t \in \mathbb{R}_{>0}$

- (in the strong sense) $\forall \phi \in \mathcal{S}(x_0)$
- (in the weak sense) $\exists \phi \in \mathcal{S}(x_0)$
- For u = k(x) Lipschitz, $\dot{x} = f(x) + g(x)k(x)$ is called safe with respect to C if C is forward invariant.

Comparison to control barrier function results

Consider the control affine system

$$\dot{x} = f(x) + g(x)u$$

- f, g locally Lipschitz
- $C \subset \mathbb{R}^n$ is called forward invariant if for every $x_0 \in C$,

$$\phi(t; x_0) \in C$$
, $\forall t \in \mathbb{R}_{\geq 0}$

- (in the strong sense) $\forall \phi \in \mathcal{S}(x_0)$
- (in the weak sense) $\exists \phi \in \mathcal{S}(x_0)$
- For u = k(x) Lipschitz, $\dot{x} = f(x) + g(x)k(x)$ is called safe with respect to C if C is forward invariant.

Definition (Control barrier function (CBF))

Let $C \subset \mathbb{R}^n$ be the superlevel set

$$C = \{ x \in \mathbb{R}^n | B(x) \ge 0 \}.$$

of a smooth function $B: \mathbb{R}^n \to \mathbb{R}$. Then B is a CBF if there exists an extended class \mathcal{K}_{∞} function $\delta: \mathbb{R} \to \mathbb{R}$ such that

$$\sup_{u \in \mathcal{U}} \left(\langle \nabla B(x), f(x) \rangle + \langle \nabla B(x), g(x) \rangle u \right) \ge -\delta(B(x)) \quad (4)$$

- δ , extended \mathcal{K}_{∞} function if there exist $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ so that $\delta(r) = \alpha_1(r)$ and $\delta(-r) = -\alpha_2(r)$ for all $r \in \mathbb{R}_{\geq 0}$.
- If B(x) is a control barrier function, then C is safe and asymptotically stable with respect to $\dot{x} = f(x) + g(x)u$ and a control law u = k(x) satisfying inequality (4).
- Note that, if B(x) is large, (4) is not restrictive.
- Note that, for $x \in \{x \in \mathbb{R}^n | B(x) = 0\}$, (4) is restrictive
- CBFs are usually used in the context of invariance (not (in)stability)

Comparison to control barrier function results

Consider the control affine system

$$\dot{x} = f(x) + g(x)u$$

- f, g locally Lipschitz
- $C \subset \mathbb{R}^n$ is called forward invariant if for every $x_0 \in C$,

$$\phi(t; x_0) \in C$$
, $\forall t \in \mathbb{R}_{\geq 0}$

- (in the strong sense) $\forall \phi \in \mathcal{S}(x_0)$
- (in the weak sense) $\exists \phi \in \mathcal{S}(x_0)$
- For u = k(x) Lipschitz, $\dot{x} = f(x) + g(x)k(x)$ is called safe with respect to C if C is forward invariant.

Definition (Control barrier function (CBF))

Let $C \subset \mathbb{R}^n$ be the superlevel set

$$C = \{ x \in \mathbb{R}^n | B(x) \ge 0 \}.$$

of a smooth function $B: \mathbb{R}^n \to \mathbb{R}$. Then B is a CBF if there exists an extended class \mathcal{K}_{∞} function $\delta: \mathbb{R} \to \mathbb{R}$ such that

$$\sup_{u \in \mathcal{U}} \left(\langle \nabla B(x), f(x) \rangle + \langle \nabla B(x), g(x) \rangle u \right) \ge -\delta(B(x)) \quad (4)$$

- δ , extended \mathcal{K}_{∞} function if there exist $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ so that $\delta(r) = \alpha_1(r)$ and $\delta(-r) = -\alpha_2(r)$ for all $r \in \mathbb{R}_{\geq 0}$.
- If B(x) is a control barrier function, then C is safe and asymptotically stable with respect to $\dot{x} = f(x) + g(x)u$ and a control law u = k(x) satisfying inequality (4).
- Note that, if B(x) is large, (4) is not restrictive.
- Note that, for $x \in \{x \in \mathbb{R}^n | B(x) = 0\}$, (4) is restrictive
- CBFs are usually used in the context of invariance (not (in)stability)

In combination with CLFs V:

$$u = k(x) = \underset{(u,\gamma) \in \mathcal{U} \times \mathbb{R}}{\operatorname{argmin}} u^T u + \gamma^2$$
subject to $\langle \nabla V(x), f(x) + g(x)u \rangle \leq -\rho(|x|) + \gamma$
 $\langle \nabla B(x), f(x) + g(x)u \rangle \geq -\delta(B(x)),$

Outlook & Further Topics (Complete control Lyapunov functions)

Definition (Weak \mathcal{KL} -stab. with avoidance prop.)

Let $O \subset \mathbb{R}^n$, $0 \notin O$, be open. $\dot{x} \in F(x)$ is weakly \mathcal{KL} -stable with respect to 0 with avoidance property with respect to O, if there exists $\beta \in \mathcal{KL}$ such that, for each $x_0 \in \mathbb{R}^n \setminus O$, there exists $\phi(\cdot; x_0) \in \mathcal{S}(x_0)$ so that

$$|\phi(t;x_0)| \le \beta(|x_0|,t)$$
 and $\phi(t;x_0) \notin O$ $\forall t \ge 0$.

Consider the special case: $O = \bigcup_{i=1}^{N} O_i$ for O_1, \ldots, O_N open and for simplicity assume N = 1 in the following.

Outlook & Further Topics (Complete control Lyapunov functions)

Definition (Weak \mathcal{KL} -stab. with avoidance prop.)

Let $O \subset \mathbb{R}^n$, $0 \notin O$, be open. $\dot{x} \in F(x)$ is weakly \mathcal{KL} -stable with respect to 0 with avoidance property with respect to O, if there exists $\beta \in \mathcal{KL}$ such that, for each $x_0 \in \mathbb{R}^n \setminus O$, there exists $\phi(\cdot; x_0) \in \mathcal{S}(x_0)$ so that

$$|\phi(t;x_0)| \le \beta(|x_0|,t)$$
 and $\phi(t;x_0) \notin O$ $\forall t \ge 0$.

Consider the special case: $O = \bigcup_{i=1}^{N} O_i$ for O_1, \ldots, O_N open and for simplicity assume N = 1 in the following.

Definition (Complete control Lyapunov function)

Suppose F satisfies the basic condition and is Lipschitz. Let $\mathcal{O}_1 \subset \mathbb{R}^n$ define an open set and let $V_C : \mathbb{R}^n \to \mathbb{R}$ be a cont. function. Assume there exist $\alpha_1, \, \alpha_2 \in \mathcal{K}_\infty$ and $\rho \in \mathcal{P}$ such that the following are satisfied. There exists $c_1 \in \mathbb{R}_{>0}$ such that

$$\begin{split} V_C(x) &= c_1 \quad \forall x \in \partial O_1 \text{ and } c_1 \leq \inf_{x \in O_1} V_C(x). \\ \alpha_1(|x|) &\leq V_C(x) \leq \alpha_2(|x|), \qquad \forall \ x \in \mathbb{R}^n \\ \min_{w \in F(x)} D_+ V_C(x; w) &\leq -\rho(x), \qquad \forall \ x \in \mathbb{R}^n \backslash O_1. \end{split}$$

Then V_C is called complete control Lyapunov function.

Theorem

Consider $\dot{x} \in F(x)$ satisfying the basic conditions and assume F is Lipschitz. Let O_1 be open and let $V_C : \mathbb{R}^n \to \mathbb{R}$ be a complete control Lyapunov function. Then $\dot{x} \in F(x)$ is weakly $\mathcal{K}\mathcal{L}$ -stable with respect to the origin and has the avoidance property with respect to O_1 .

 \rightsquigarrow If O_1 is bounded, V_C is necessarily nonsmooth.

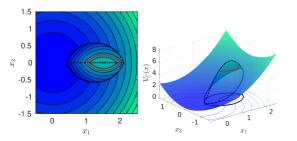
Outlook & Further Topics (Complete control Lyapunov functions)

Definition (Weak \mathcal{KL} -stab. with avoidance prop.)

Let $O \subset \mathbb{R}^n$, $0 \notin O$, be open. $\dot{x} \in F(x)$ is weakly \mathcal{KL} -stable with respect to 0 with avoidance property with respect to O, if there exists $\beta \in \mathcal{KL}$ such that, for each $x_0 \in \mathbb{R}^n \setminus O$, there exists $\phi(\cdot; x_0) \in \mathcal{S}(x_0)$ so that

$$|\phi(t;x_0)| \le \beta(|x_0|,t)$$
 and $\phi(t;x_0) \notin O$ $\forall t \ge 0$.

Consider the special case: $O = \bigcup_{i=1}^{N} O_i$ for O_1, \ldots, O_N open and for simplicity assume N = 1 in the following.



Definition (Complete control Lyapunov function)

Suppose F satisfies the basic condition and is Lipschitz. Let $O_1 \subset \mathbb{R}^n$ define an open set and let $V_C : \mathbb{R}^n \to \mathbb{R}$ be a cont. function. Assume there exist $\alpha_1, \, \alpha_2 \in \mathcal{K}_\infty$ and $\rho \in \mathcal{P}$ such that the following are satisfied. There exists $c_1 \in \mathbb{R}_{>0}$ such that

$$V_C(x) = c_1 \quad \forall x \in \partial O_1 \text{ and } c_1 \le \inf_{x \in O_1} V_C(x).$$

$$\begin{aligned} \alpha_1(|x|) &\leq V_C(x) \leq \alpha_2(|x|), & \forall \ x \in \mathbb{R}^n \\ \min_{w \in F(x)} D_+ V_C(x; w) &\leq -\rho(x), & \forall \ x \in \mathbb{R}^n \setminus O_1. \end{aligned}$$

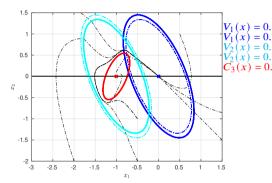
Then V_C is called complete control Lyapunov function.

Theorem

Consider $\dot{x} \in F(x)$ satisfying the basic conditions and assume F is Lipschitz. Let O_1 be open and let $V_C : \mathbb{R}^n \to \mathbb{R}$ be a complete control Lyapunov function. Then $\dot{x} \in F(x)$ is weakly $\mathcal{K}\mathcal{L}$ -stable with respect to the origin and has the avoidance property with respect to O_1 .

 \sim If O_1 is bounded, V_C is necessarily nonsmooth.

Combined stabilizing and destabilizing controller design using hybrid systems



Example: Consider the linear system

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u, \qquad u \in \mathbb{R}.$$

Idea:

- Construct control Lyapunov functions and control Chetaev functions with respect to reference points (induced equilibria)
- Construct corresponding feedback laws stabilizing/destabilizing reference points.
- Orchestrate switching strategy to guarantee stability and avoidance

(In-)Stability of Differential Inclusions

— Notions, Equivalences & Lyapunov-like Characterizations —

Philipp Braun

School of Engineering, Australian National University, Canberra, Australia

In Collaboration with:

L. Grüne: University of Bayreuth, Bayreuth, Germany

C. M. Kellett: School of Engineering, Australian National University, Canberra, Australia

